
HotSpot Cache: Saving I-Cache Energy with Dynamic Program Hot

Spot Detection for Multimedia Applications

Chia-lin Yang, Chien-hao Lee

Department of Computer Science and Information Engineering

National Taiwan University

Taipei 106, Taiwan

Abstract Power consumption is an important design issue of current embedded sys-

tems. It has been shown that instruction cache accounts for a significant portion of

the power dissipation of the whole chip. Several studies have proposed to add a cache

(L0 cache) that is very small relative to the conventional L1 cache on chip for power

optimization since a smaller cache has lower load capacitance. However, energy savings

often come at the cost of performance degradation. In this paper, we propose a mech-

anism that detects program hot spots dynamically and stores only hot spots in the L0

cache. The optimization goal is to achieve high L0 cache utilization without sacrificing

performance. We design a run-time hot-spot detection mechanism around the Branch

Target Buffer. The results show up to 57 % energy reduction without performance

degradation for a set of multimedia applications.

1 Introduction

There has been an increasing demand for running multimedia applications on battery-

operated embedded system such as cellular phones and personal digital assistants. The

most challenging design issue for such systems is how to reduce energy consumption

while meeting the performance demand of multimedia applications.

It has been reported that the instruction cache consumes a significant portion of

the total processor power. For example, 27% of processor power is dissipated in the L1

instruction cache in StrongARM 110 [1]. Cache partition is commonly used to reduce

cache energy dissipation since a smaller cache has a lower load capacitance. The Filter

cache [2] proposes to add a relative small cache (L0 cache) between the CPU and L1

cache as shown in Figure 1.1. On each access, the L0 cache is first accessed. The L1

cache is only accessed when an L0 miss occurs. Because the L0 cache size is very small,

the miss rate is high and the performance degradation can be more than 20%.

One approach to amend this performance degradation is to store only frequently

1

Figure 1.1: Filter Cache

accessed instructions in the L0 cache and bypass the L0 cache for other instructions.

L-Cache, a compiler-managed L0 cache [8], maps frequently accessed basic blocks to

the L0 cache based on the profile information from the program’s entire execution. The

downside of a static approach is that it is not able to adapt to changes in program

behavior. It has been observed that program execution often occurs in distinct phases,

which may contain different sets of hot basic blocks [9]. Therefore, to utilize the L0

cache more efficiently, we should identify hot basic blocks in each distinct phase instead

of the entire program execution.

In this paper, we propose a dynamic mechanism that is able to detect program phase

change and select hot basic blocks early in each program phase. The proposed approach

contains two stages: profiling stage for hot basic block detection and monitoring stage

for phase change detection. In the profiling stage, execution frequencies of branches are

tracked and basic blocks corresponding to frequently accessed branches are promoted

to the L0 cache. Once the size of promoted basic blocks exceeds the L0 cache size, the

system enters the monitoring stage for phase change detection. We limit the number of

instructions promoted to the L0 cache for performance consideration. Since performance

is important for multimedia applications, our design goal is to achieve high L0 cache

utilization without sacrificing performance. To make such a hardware-based technique

useful for low energy, we build the detection mechanism around the Branch Target

Buffer. The simulation results show that the proposed scheme reduces the instruction

cache energy consumption by 50% on the average without sacrificing performance.

The rest of the paper is organized as follows. Section 2 discusses related work.

Section 3 provides the motivation behind our approach. Section 4 details the proposed

mechanism. Section 5 describes our experimental methodology and Section 6 presents

2

the results. Section 7 concludes this paper.

2 Related work

Several studies have proposed to use a smaller cache for reducing the energy dissipation

of instruction cache. Block buffering [3] uses a block buffer to latch the last cache

line. [6] suggests to buffer decoded instruction to save energy both in the I-cache access

and instruction fetch/issue logic. Lee et al. [10] introduces a loop cache that dynamically

fills the cache after detecting a simple loop.

The filter cache [2] adds a smaller cache between the processor and L1 cache to

store recently accessed blocks. As mentioned in the previous section, energy reduction

is often achieved at the cost of longer average memory access time. Bellas et al. [9]

use a profile-guided compiler to map frequently accessed instructions to the L0 cache.

Later, Bellas et al. [7] propose to identify hot spots dynamically. Their scheme is

based on the observation that highly predictable branches (high confidence branch)

tend to be accessed more frequently than others. Therefore, basic blocks associated

with high confidence branch are selected for storing in the L0 cache. Their scheme

depends on the prediction accuracy of underlying branch predictor. Therefore, it may

fail to identify frequently executed basic blocks if the branch behavior of an application

is not predictable. For examples, the ADPCM encoder/decoder have very small code

sizes, however, the branch mis-prediction rate is up to has up to x%. In this paper,

we provide a more accurate approach for hot basic block selection and limit the size of

instructions stored in the L0 cache to avoid performance degradation. Weiyu Tang et

al. [15] proposed a next address prediction scheme which dynamically predicts where the

next instruction exists (L0 or L1) to reduce the performance impact of the conventional

filter cache design. The effectiveness of their scheme depends on the prediction accuracy.

Later in this paper, we will compare the proposed hotspot cache with their mechanism.

Similar to this study, Merten et al. [9] also propose to dynamically identify hot basic

blocks in each program phase. But their objective is to perform runtime optimization.

Also J. S. Hu et al. [15] propose to dynamically identify hot basic blocks using a branch

target buffer(BTB), but their objective is to provide a leakage management approach.

3

3 Motivation & Approach

In this section, we first analyze the branch execution behavior of multimedia appli-

cations that motivate this study. After that, we describe the main idea of proposed

approach to reduce the instruction cache energy consumption without causing perfor-

mance degradation.

Figure 3.1: Frequently accessed branch distribution of jpeg encoder

3.1 Program Behavior

It has been shown that program execution often occurs in distinct phases, which may

contain different set of hot basic blocks [9]. Multimedia applications also present the

similar program behavior. Figure 3.1 plots frequently accessed branches running a jpeg

encoder. Each data point represents a branch that is executed at least 1000 times

per sample duration (10,000 branches). We can see that the jpeg encoder execution is

composed of 3 phases and each phase contains different hot basic blocks.

Bellas et al. [9] proposes a static approach that selects basic blocks to be mapped

to the L0 cache based on the profile information from the entire program execution. To

avoid performance degradation, the number of basic blocks mapped to the L0 cache is

limited by the capacity of the L0 cache size. This approach may underutilize the L0

cache in program phases where identified hot basic blocks are not active. To fully utilize

the L0 cache, one should identify hot basic blocks in each program phase instead of the

entire program lifetime. In this paper, we propose a run-time mechanism that dynam-

4

ically detects phase change and selects active hot basic blocks early in each program

phase.

3.2 Main Idea

Profiling Monitoring

Promoted Basic Blocks >= L0 Size

Phase Change

Figure 3.2: Run-Time L0 Cache Management Scheme

The proposed system is composed of two stages as shown in Figure 3.2. In the

profiling stage, the system gathers access frequencies of executed branches and deter-

mines which basic blocks should be promoted to the L0 cache. The promoting policy is

quite straightforward: a basic block is promoted to the L0 cache once the correspond-

ing branch reaches a predefined threshold (candidate threshold). We assume that most

frequently accessed basic blocks are more likely to reach the candidate threshold earlier

than others. To prevent performance degradation from excessive L0 cache misses, we

limit the size of promoted cache blocks. Once the L0 cache is filled up, we stop profiling

and enter the monitoring stage.

Note that our method is quite aggressive in declaring a hot branch. In [9], which

dynamically identifies hot blocks for runtime optimization, branches with access fre-

quency greater than the candidate threshold (candidate branches) are observed for a

period of time. Candidate branches are declared as hot branches when they are active

during that period and the candidate branches account for at least a certain percentage

of the total branches executed during that time. In contrast, we promote a basic block

to the L0 cache as soon as its access frequency reaches the candidate threshold. The

main reason for choosing the eager promotion policy is because we would like to utilize

5

the L0 cache as early as possible. Since we limit the size of the promoted cache blocks,

such a simple policy may prevent true hot basic blocks from being promoted to the L0

cache. We rely on the phase detection mechanism described below to ensure that we

can detect true hot basic blocks eventually.

During the monitoring phase, the system tracks branch execution to ensure that

the hot branches should account for at least a certain percentage of the total branches

executed. If the percentage is below a predefined threshold value, it indicates that there

could be a phase change or identified hot basic blocks are not correct. Thus, the system

enters the profiling stage again to identify a new set of hot basic blocks. The phase

detection mechanism ensures that spurious hot basic blocks do not prevent true hot

basic blocks from being promoted to the L0 cache. In the next section, we detail the

implementations to realize the proposed approach.

4 Implementations

CPU

Exe
Counter

Hot-Block
flag

1

0+

-

Mode Controller

Target
AddrBranch Tag

L0

L1

Branch Target Buffer

Monitor
Counter

Overflow

Start
profiling

Branch
Address

LineBuffer

Prev-Hot
flag

W
r
i
t
e

s
e
l
e
c
t
i
o
n

Figure 4.1: Block Diagram of Proposed Run-Time L0 Cache Management Scheme

To achieve energy saving, the mechanism should not incur significant hardware over-

head. Therefore, we design the hot spot and phase detection mechanisms around the

Branch Target Buffer (BTB), which is commonly used in modern microprocessor to

resolve branch target address in the instruction fetch stage. The block diagram of pro-

posed scheme is illustrated in Figure 4.1. Each entry of BTB is associated with an

execution counter, a hot-block flag, and a prev-hot flag (which will be explained later).

For each BTB hit, the associated execution counter is incremented. When the execution

6

counter reaches its maximum value (i.e., candidate threshold), a potential hot block is

detected. Therefore, the hot-block flag is set and the corresponding basic block of this

branch is promoted to the L0 cache.

The phase detection mechanism is similar to what proposed in [9]. An up/down

counter called the monitor counter (8 bits) is used to track the hot branch execution

percentage. The monitor counter is initially set to 128. It counts down when a hot

branch is executed and counts up when a non-hot branch is executed. When the counter

saturates, it means that non-hot branches account for more than half of executing

branches. This indicates that either the program enters a new phase or we have not

correctly identified hot blocks. The system should enter profiling stage at this point to

detect new sets of hot blocks. The hot-branch flags to set in BTB are switch to the

other one (either hot-block flag to prev-hot flag, or prev-hot flag to hot-block flag) and

the profiling unit is turned on again.

A potential problem of the proposed phase detection mechanism is false phase

change. Since we limit the size of cache blocks promoted to the L0 cache to avoid

performance degradation, if hot basic blocks have large static footprints, the hot branch

execution percentage could be lower than 50% even though identified hot blocks are

correct. If this situation were to occur, the system would switch between profiling and

monitoring phase constantly. The false phase change phenomenon could potentially de-

grade the effectiveness of the proposed scheme since there is a warm-up period at each

new profiling stage when the L0 cache is not utilized. To solve this problem, we keep the

hot branch information of the previous phase until the system stabilizes (i.e., entering

the monitoring stage). The hot-spot information is kept in the prev-hot flag. On each

access, if either one of the hot-block and prev-hot flags is set, the access is directed to

the L0 cache. Once the system enters the monitoring stage, all prev-hot flags should

be cleared. To avoid the overhead of copying the hot-flag fields to the prev-hot flag for

each new phase, these two fields are alternately selected as the destination for setting

hot-branch.

The last component in the proposed mechanism is the mode controller which controls

whether the L0 or L1 cache should be accessed in the instruction fetch (IF) stage. There

are three fetch modes:

• L0 mode: Fetch an instruction from the L0 cache

• L1 mode: Fetch an instruction from the L1 cache

7

Fetch Mode Events

L0 Mode (1) BTB hit && (in profiling phase) && (hot-spot flag or prev-hot flag)
is 1
(2) BTB hit && (in monitoring phase) && hot-spot flag is 1

L1 Mode (1) BTB hit && (in monitoring phase) && hot-block flag is 0
(2) BTB hit && (in profiling phase) && (hot-block flag and prev-hot
flag are 0) && (execution counter ++ < candidate threshold)
(3) L0 cache misses
(4) Branch mis-prediction

Promoting Mode BTB hit && (in profiling phase) && (hot-block flag is 0) && (execution
counter ++ == candidate threshold)

Table 4.1: Fetch Mode Transition Events

• Promoting mode: Fetch an instruction from the L1 cache and copy it to the L0

cache.

Table 4.1 summaries transition events for each fetch mode. Below we elaborate on

these events. On every BTB hit,

1. If the hot-block flag is 0 and in profiling stage, if prev-hot flag is 0, the corre-

sponding basic block has not been promoted to the L0 cache, neither in previous

phase. Therefore, an instruction should be fetched from the L1 cache. The re-

maining question is whether to copy the instruction to the L0 cache (i.e., L1 mode

or promoting mode). The execution counter is incremented by one. If an overflow

occurs (i.e. the execution counter value is equal to the candidate threshold), the

corresponding basic block should be promoted to the L0 cache (promoting mode);

otherwise, the L1 mode is set; else if prev-hot flag is 1, the corresponding basic

block is probably still in L0 cache. So, L0 mode is set.

2. If the hot-block flag is 0 and in monitoring stage, the corresponding basic block has

not been promoted to the L0 cache. Therefore, an instruction should be fetched

from the L1 cache. The L1 mode is set.

3. If the hot-block flag is 1, the corresponding basic block has been promoted to

the L0 cache. Therefore, an instruction should be fetched from the L0 cache (L0

mode).

If an instruction misses in the BTB, it could be (1) a non-branch instruction, (2)

a non-taken branch or (3) a taken branch. The first two cases should not incur mode

transition since the access frequency of the executing instruction should be the same

8

Application Type

ADPCM encoder/decoder Audio compression/decompression

Epic/Unepic Data compression/decompression

G721 encoder/decoder Voice compression/decompression

Jpeg encoder/decoder Image compression /decompression

Lame /Mad Mp3 compression /decompression

Mpeg2 encoder/decoder Video compression /decompression

Table 5.1: Benchmark Summaries

as the previous taken-branch, which determines the current fetch mode. The third

scenario could happen either because the branch is replaced from the BTB or the branch

prediction is not accurate. To prevent a hot branch being replaced from the BTB, we

modify the BTB replacement policy such that a non-hot branch should be first replaced.

Therefore, a miss taken-branch is very likely to be a non-hot branch. If a branch is mis-

predicted, it is very likely that it is not executed frequently therefore the L1 mode should

be activated. In either case, mis-prediction is detected once the branch is resolved.

Therefore, the fetch mode should transition to the L1 mode if a mis-prediction occurs.

Finally, whenever a fetch misses in the L0 cache, the L1 mode is activated. This

is based on the observation that if an instruction misses in the L0 cache, it is very

likely that the remaining instructions in the same basic block also miss in the L0 cache.

Therefore, we shall fetch instructions from the L1 cache directly to avoid increasing the

L1 cache access latency. Note that once a cache line is replaced from the L0 cache, we

do not bring it into the L0 again to eliminate conflicts among promoted hot basic blocks

for performance consideration.

Note that our instruction cache is enhanced with one entry line-buffer as proposed

in [14]. A requested cache block is fetched into the line buffer. Accessing the line buffer

occurs in parallel with the decoding of the L1 cache to avoid performance degradation.

If a memory reference hits in the line buffer, data are read from the L1 cache to achieve

energy savings. Since the instruction stream usually presents good spatial locality, the

line buffer is very effective to further reduce the energy consumed from those non-hot

basic blocks.

5 Experimental Methodology

We use Wattch toolset [5] developed at Princeton University to conduct our experiments.

Wattch generates both the performance and energy data through execution-driven sim-

ulation. We modified Wattch to simulate the energy-saving techniques proposed in

9

this paper and also incorporated newer cacti library. Our baseline machine model is an

ARM-like single-issue in-order processor. The processor contains a 512B, direct-mapped

L0 instruction cache and a 16KB direct-mapped L1 instruction cache. The line size of

both the L0 and L1 cache is 32 bytes. The BTB has 64 sets and the associativity is 4. We

select the cache and BTB configuration based on the SA-1110 design [4]. Since DRAM

memory power is not modeled in the Wattch toolset, a four-way 512KB L2 cache is used

as a backing storage. All the caches are single-ported. We evaluate energy consumption

assuming 0.35um process technology and activity sensitive conditional clocking. The

candidate threshold value is set to 64. We perform analysis on several threshold values

(8 to 1024) and find 64 works well for all the applications.

Since we focus on the multimedia applications in this paper, we use applications in

the Mediabench [11] and Mibench [12] to evaluate our scheme. But our proposed scheme

can also be applied to other classes of applications. We choose 6 sets of encoder/decoder

for different media types (data, voice, image and video). The applications tested in the

study are summarized in table 5.1.

6 Experimental Results

In this section, we evaluate if the proposed hot-spot I-cache successfully achieves the

optimization goal: achieving high L0 cache utilization with performance guarantee.

6.1 Overhead Analysis

Before presenting the performance impact and energy savings of the proposed hot-spot

I-cache, we first analyze the energy overhead from accessing the execution counter (5

bit) associated with each BTB entry and the monitor counter (8 bits). We model a

counter as a register in Wattch [5]∗ . The energy per access is roughly 0.21pJ and

0.34pJ for 5-bit and 8-bit registers, respectively. Our simulation results indicate that

for the benchmarks tested in this paper, there are 0.02/0.13 bit transition per cycle on

average for the execution/monitor counters. Note that the frequency of bit transitions

of the monitor counter is larger than the execution counter because an application stays

in the monitoring stage much longer than the profiling stage. On the average, the

energy consumed from counter accesses is 0.046 pJ per cycle. It is roughly 7 orders of

magnitude lower than the energy consumed per I-cache access (0.19mJ). Therefore, the

∗Kaxiras et. al. [13] use the same method to evaluate the counter overhead incurred by their scheme.

10

Benchmark Number
of distinct
phases

% dynamic
instructions
of a per-
fect static
mechanism

% dynamic
instructions
of hot-spot
I-Cache

L0 cache
miss rate
of hot-spot
I-Cache

L0 cache
miss rate
of the filter
cache

ADPCM decoder 1 99.8% 99.7% 0.0% 0.0%

ADPCM encoder 1 99.7% 99.7% 0.0% 0.0%

Unepic 11 46.3% 88.3% 0.5% 2.5%

Epic 9 77.6% 94.6% 0.3% 1.3%

G721 decoder 1 57.0% 49.2% 1.1% 11.6%

G721 encoder 1 47.2% 43.3% 1.5% 11.4%

Jpeg decoder 2 42.5% 46.0% 0.4% 11.5%

Jpeg encoder 3 43.0% 65.0% 0.4% 8.0%

Lame 3 11.3% 20.1% 0.5% 14.3%

Mad 1 73.2% 50.7% 2.5% 9.0%

Mpeg2 decoder 3 66.9% 74.7% 0.3% 4.2%

Mpeg2 encoder 7 15.1% 42.5% 1.1% 12.7%

Table 6.1: Summaries of important program attributes

Figure 6.1: Hot branches in HotSpot cache v.s. profiling-based frequently executed
Branches v.s. static scheme. Note that the HotSpot Cache stays in the monitoring
phase during the execution interval where no data points of HotSpot Cache are plotted.

11

counter overhead is negligible.

6.2 Miss rates and Access Frequency of the L0 cache of the HotSpot

I-Cache

Before presenting the energy savings and performance impact of the HotSpot Cache,

we first evaluate its effectiveness using the L0 cache miss rate (# of L0 cache misses

/ total # of memory references) and the percentage of dynamic instructions accessing

the L0 cache (i.e., L0 cache access frequency). These two metrics can best quantify the

effectiveness of the proposed scheme independent of the underlying technology. Recall

that our optimization goal is to achieve high L0 cache utilization without sacrificing

performance. It is simple to demonstrate the performance guarantee since a low L0

cache miss rate implies negligible performance degradation incurred. The difficult part

is to evaluate how well the proposed scheme utilizes the L0 cache provided that it

does not incur significant performance degradation. To find a comparison base, we

sort basic blocks according to their access frequency and add the frequencies of most

frequently executed basic blocks provided that their sizes is smaller than the size of the

L0 cache. This can be considered as the optimal L0 cache utilization achievable by a

static mechanism since it assumes no conflicts among frequently executed basic blocks.

Table 6.1 summaries the simulation results for all 12 benchmarks tested in this paper.

We first examine whether the proposed scheme meets our performance criteria. We

list the L0 cache miss rates of the filter cache mechanism in Table 6.1 for comparison.

We can see that except for mad, the L0 cache miss rates for all benchmarks are below or

close to 1% while the miss rate of the filter cache is up to 14%. Since we limit the size of

promoted cache blocks, majority of the L0 misses come from conflicts among promoted

cache blocks. As mentioned in Section 4, to reduce conflict misses, once a cache line is

replaced from the L0 cache, we do not bring it back into the L0 cache again. This is very

important in minimizing performance degradation. Note that we are not able to further

reduce the L0 cache miss rate since the branch associated with the replaced cache line is

still marked as a hot branch. This implies that the first instruction of a cache block that

misses in the L0 cache will still result in a L0 cache miss when it is executed again. We

think 2.5% of L0 cache miss rate should not incur significant performance degradation.

We will show the performance impact of the proposed scheme in terms of execution

time in the section below.

Two program attributes determine how well the proposed scheme can utilize the L0

12

cache compared to perfect static mechanism described above. The first one is whether

promoted cache blocks conflict from one another in the L0 cache. Recall that replaced

L0 cache lines are not brought into the L0 cache again. This design decision is to

trade-off energy savings with performance. The second factor is the number of distinct

phases in a program. The proposed scheme should have more significant advantage over

a static approach for applications experiencing more phase changes (See Figure 6.1).

We now compare the L0 cache access frequency of the proposed scheme with that

of a perfect static mechanism listed in Table 6.1. Mad, g721 encoder/decoder are

three applications with lower L0 utilization than a static one because of conflicts among

frequently executed basic blocks in the L0 cache and they have only one phase. For Mad,

we examine the addresses of 16 most frequently executed basic blocks identified by the

static approach and find 12 of them conflict with each other. For applications with

more distinct phases† , such as unepic, epic, jpeg encoder, mpeg2 decoder, and mpeg2

encoder, the HotSpot Cache mechanism achieves significantly higher L0 cache utilization

than a perfect static mechanism (between 8% to 42% differences). For applications that

have only one phase during execution, such as adpcm encoder/decoder, the L0 cache

utilization of the HotSpot Cache is close to a perfect static mechanism as expected.

Note that adpcm encoder/decoder have very small code sizes, therefore, both static and

hot-spot cache capture the whole program in the L0 cache.

To illustrate the success of the proposed scheme, we plot the branches promoted to

the L0 cache in both the static scheme and hot-spot cache in Figure6.1 for the jpeg

encoder. We also show frequently executed branches (i.e., a branch that is executed

at least 1000 times per sample duration)identified through profiling in each phase for

verification. Each data point associated with the HotSpot Cache represents an identified

hot branch. We can observe that majority of identified hot branches of the hot-spot

cache overlap with frequently executed basic blocks through profiling. On the other

hand, the static scheme only identifies parts of these branches in two out of three

phases. This explains why the hot-spot cache can achieve 22% more dynamic accesses

compared to the static scheme.

13

Figure 6.2: Normalized Energy Consumption of HotSpot Cache, L1 cache with 1 entry
line buffer, Filter Cache, NP Filter Cache, and Static Scheme

Figure 6.3: Normalized Delay of HotSpot Cache, Filter Cache, NP Filter Cache, and
Static Scheme

14

6.3 Performance and Energy-Saving of the HotSpot Cache

Figure 6.2 shows the energy consumption (L0 cache + L1 cache) normalized to the base

configuration (without L0 cache). We compare the hot-spot caches with other previously

proposed mechanisms: one-entry line buffer, the filter cache, the next address predictive

filter cache and the perfect static mechanism described in the previous section. The next

address predictive filter cache proposed in [15] uses additional NP table to store the tag

of next fetch address, and the next fetch address tag to compare current fetch address

tag to predict next fetch mode. If the current fetch tag equals predicted next fetch tag,

it is likely that the program is executing in a small loop that fits in the L0 cache and

thus fetch from L0 cache; otherwise, fetch from L1 cache. This simple scheme relies on

its prediction accuracy, and can only capture temporal reuses within small loops. The

results show that the hot-spot cache achieve largest energy reduction compared with

other schemes. The energy reduction from the line buffer are similar for all applications

since it only utilizes the spatial locality within one cache block. The next address

predictive filter cache does not work well for applications with large footprints, such as

lame and mpeg2 encoder. The filter cache achieve energy reduction comparable to our

scheme except for applications with high L0 cache miss rates, such as mpeg2 encoder

and lame.

Figure 6.3 shows normalized execution time of the HotSpot Cache and other schemes.

We can see that the normalized execution time of our proposed HotSpot Cache is close

to 1 for all benchmarks. This shows that the performance guarantee is satisfied. Among

all scheme tested, the hot-spot cache is the only one that can achieve energy savings

with performance guarantee except for the line buffer.

7 Conclusion

In this paper, we propose an architectural approach to dynamically select basic blocks for

storing in the L0 cache. We design a profiling and phase detection mechanism that can

successfully identify frequently accessed basic blocks in each program phase at runtime.

Only basic blocks declared as hot blocks are stored in the L0 cache. A mode controller is

employed to determine which caches (L0 or L1) should be accessed during the instruction

fetch stage. The proposed approach can achieve high L0 cache utilization without

†To determine the number of distinct phases for all tested applications, we perform the same branch
behavior analysis of jpeg encoder shown in Figure 6.1 for all tested applications.

15

sacrificing performance. The simulation results show that the proposed mechanism can

reduce the energy consumption of the instruction cache by 50% on the average for a set

of multimedia applications without performance degradation.

References

[1] J. Montanaro, et al. A 160-MHz, 32-b, 0.5-W CMOS RISC microprocessor.

IEEE Journal of Solid State Circuits 31 , 11:1703-1714, November 1996

[2] J. Kin, M. Gupta, W. H. Mangione-Simith. The Filter Cache: An Energy Ef-

ficient Memory Structure. In Proceedings of 30th Annual International Symposium

on Microarchitecture, December, 1997

[3] C.-L. Su and A. Despain. Cache Design Tradeoffs for Power and Performance

Optimization: A Case Study. In Proceedings of International Symposium on Low

Power Design, Apr. 1995, pp. 63-68.

[4] Intel StrongARM SA-1110 Microprocessor Brief Datasheet, April 2000.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A Framework for

Architectural-Level Power Analysis and Optimizations. In Proceedings of the 27th

International Symposium on Computer Architecture (ISCA), Vancouver, British

Columbia, June 2000.

[6] R. S. Bajwa, M. Hiraki. H. Kojima, D. Gorny, K. Nitta, A. Shridhar,

K. Seki and K. Sasaki. Instruction Buffering to Reduce Power in Processors for

Signal Processing. In IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 5, No. 4, December 1997.

[7] N. E. Bellas, I. N. Hajj and C. D. Polychronopoulos. Using Dynamic

Cache Management Techniques to Reduce Energy in General Purpose Processors.

In IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 8, No.

6, December 2000.

[8] N. E. Bellas, I. N. Hajj, C. D. Polychronopoulos and G. Stamoulis.

Architectural and Compiler Techniques for Energy Reduction in High-Performance

Microprocessors. In IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, Vol. 8, No. 3, June 2000.

16

[9] M. C. Merten, A. R. Trick, C. N. George, J. C. Gyllenhaal and W. W.

Hwu. A Hardware-Driven Profiling Scheme for Identifying Program Hot Spots

to Support Runtime Optimization. In Proceedings of International Symposium

Computer Architecture, May, 1999, pp. 136-147.

[10] L. H. Lee W. Moyer and J. Arends. Instruction Fetch Energy Reduction Using

Loop Caches for Embedded Applications with Small Tight Loops. In Proceedings

of International Symposium on Low Power Design, August 1999, pp. 63-68.

[11] C. Lee, M. Potkonjak and W. H. Mangione-Smith. Media-bench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems. In Proceed-

ings of the 30th Annual International Symposium on MicroArchitecure, December

1997.

[12] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, R.

B. Brown, MiBench: A free, commercially representative embedded benchmark

suite. In IEEE 4th Annual Workshop on Workload Characterization, Austin, TX,

December 2001.

[13] S. Kaxiras, Z. Hu and M. Martonosi. Cache Decay: Exploiting Generational

Behavior to Reduce Cache Leakage Power. In Proceedings of the 28th International

Symposium on Computer Architecture (ISCA), Goteborg, Sweden, June 2001.

[14] Kanad Ghose and Milind B. Kamble Reducing Power In Superscalar Processor

Caches Using Subbanking, Multiple Line Buffers And Bit-Line Segmentation. In

ISLPED 99 , San Diego, CA, USA, 1999.

[15] Weiyu Tang, Rajesh Gupta, and Alexandru Nicolau Design of a Predictive

Filter Cache for Energy Savings in High Performance Processor Architectures. In

InternationalConference on ComputerDesign(ICCD), Austin, Texas, USA, 2001.

[16] J. S. Hu, A. Nadgir, N. Vijaykrishnan, M. J. Irwin, M. Kandemir Ex-

ploiting Program Hotspots and Code Sequentiality for Instruction Cache Leakage

Management. In Proc. of the International Symposium on Low Power Electronics

and Design (ISLPED’03), Seoul, Korea, August, 2003.

17

