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Abstract

In distributed systems, the lack of global information
about data transfer between clients and servers makes im-
plementation of parallel I/O a challenging task. In this
paper, we propose two distributed algorithms for schedul-
ing data transfer in parallel I/O with non-uniform data
sizes, the Maximum-Size/Maximum-Load (MS/ML) algo-
rithm and the Minimum-Size/Earliest-Completion-First
(MS/ECF) algorithm. Experimental results indicate
that both algorithms achieve good performance, com-
pared with the results achieved by their centralized coun-
terparts. Both algorithms yielded parallel performances
within 6% of the centralized solutions.

We also compare the performance of our algorithms with
a distributed Highest Degree First (HDF) method, which
handles non-uniform data transfers by dividing them into
units of fixed-sized blocks which are then scheduled and
transferred one at a time. Experimental results show that
our algorithms require less scheduling and data transfer
time, resulting in better overall parallel I/O performance.
Our simulations also show that MS/ML is more suitable for
parallel I/O with lighter data transfer traffic, while MS/ECF
is more suitable for parallel I/O with heavy data transfer
traffic.

1. Introduction

Over the past few years, significant research efforts have
been devoted to devising methodologies for enabling par-
allel I/O, including low-level solutions, such as disk strip-
ing and disk-directed I/O, operating system support, such
as parallel file systems [15, 12, 2, 3], and compiler and li-
brary support [19, 20].

Traditional parallel systems use a smaller number of I/O
servers and disks in parallel to increase I/O bandwidth.
These systems can suffer I/O bottlenecks since many pro-
cessors share a relatively small number of disks. On the

other hand, cluster computers, and recently the Grids, can
provide a larger data storage capacity since usually each
node has at least one disk attached. The main drawback is
that data has to be accessed through the cluster network (or
the Wide Area Network that connects the sites of a Grid)
that is typically slower than the I/O bus. Therefore, the per-
formance of parallel I/O in distributed systems is domi-
nated by how fast data can be transfered between process-
ing nodes and disks. The data transfer time can be reduced
in several ways. For instance, we may reduce the transfer
time by choosing proper placement of I/O servers in the
network to reduce the amount of remote data transfer [5],
by prefetching or caching disk data to overlap computation
with I/O operations, or by careful scheduling of parallel I/O
requests (i.e. parallel I/O scheduling). In this paper, we fo-
cus on parallel I/O scheduling.

Data transfers in parallel I/O can be modeled by a bipar-
tite graph, where the clients and the servers form the two
sets of vertices, and the edges represent data transfers be-
tween them. When the data sizes are uniform (all the edges
have the same weight), scheduling data transfers can be
viewed as an edge coloring problem, where data transfers
scheduled in the same time slot form a matching in the bi-
partite graph. It is shown that d colors are necessary and
sufficient to edge color a bipartite graph with maximum de-
gree d [1].

Efficient centralized algorithms to obtain optimal edge
coloring can be found in [4, 13, 14, 16]. Some of these
results show that when the parallel I/O request pattern is
known to a centralized algorithm, it can improve parallel
I/O performance by 30% to 40% [13, 14]. However, in
many distributed systems, global information about paral-
lel I/O requests may not be centrally available due to lack
of shared memory, and it is too costly to maintain such
global information in the distributed memories of the pro-
cessors via message passing through the network. Over the
past few years, a number of distributed algorithms were pro-
posed for the edge-coloring problem [6, 7, 8, 11, 17, 18].
Many of these algorithms are based on randomization or re-
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cursive schemes such as divide-and-conquer. Previous ana-
lytical and simulation results show that some of these dis-
tributed algorithms can achieve good performance close to
the optimal solution obtained from centralized algorithms.

The aforementioned algorithms are all targeted for par-
allel I/O with uniform data sizes. Many applications require
parallel I/O with non-uniform data transfer sizes, for in-
stance, scientific computation with unstructured or dynamic
data structures. Directly applying existing distributed algo-
rithms to this class of applications requires that the data
transfers be divided into units of fixed-sized blocks and be
scheduled and transmitted one block at a time [9], result-
ing in a large number of messages passing and synchro-
nizations between clients and servers. In a distributed mem-
ory system, there is typically a non-trivial communications
latency or startup cost, therefore the communication over-
heads of this fixed-size scheduling approach can easily be-
come the bottleneck of the overall parallel I/O performance.

To demonstrate this I/O bottleneck we compared the par-
allel I/O performance of two scheduling methods – RAND
and UAR. Both methods randomly pick source/destination
pairs for communication, with the only difference being
that UAR divides data transfers into fixed-size blocks, while
RAND does not. Figure 1 illustrates their differences in par-
allel I/O performance on a 16-node PC cluster with Myrinet
interconnect, which has peak network bandwidth of 1.28
Gbps. Each node of the cluster is a Pentium-III hooked with
an IDE disk with disk capacity of 20GB and average disk
bandwidth of 32.96 Mbps. Four out of the 16 nodes are
used as I/O servers. As Figure 1 indicates, the UAR method
is consistently inferior to RAND due to higher communica-
tion overheads from cutting messages into unit sized blocks.
The gap between the two methods decreases as the block
size increases and the number of blocks decreases. This ex-
perimental result convinced us that new algorithms are nec-
essary for scheduling non-uniform data transfers.

In this paper, we first show that finding an optimal sched-
ule for parallel I/O with non-uniform data sizes is NP-
complete. Then we propose two centralized algorithms to
find near-optimal solutions: a maximum-matching-based al-
gorithm called MWM, and a greedy algorithm based on the
virtual time of clients and servers, called Earliest Comple-
tion First (ECF). Our experimental results show that MWM
and ECF achieve parallel I/O performance close to the op-
timal, and within 4% of the optimal for certain parameter
choices.

We also propose two distributed algorithms, called
MS/ML and MS/ECF that approximate MWM and ECF
in distributed environments. These two distributed al-
gorithms are based on a distributed, two-step scheme
that determines appropriate execution order of data re-
quests through a small number of rounds of bidding be-
tween clients and servers. We compare our algorithms
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Figure 1. The comparison of throughput for
algorithm RAND and UAR

with the best distributed algorithm reported in the liter-
ature, Highest Degree First method (HDF), for schedul-
ing non-uniform parallel I/O. Our experimental results
indicate that MS/ML and MS/ECF require less schedul-
ing time than HDF and yield better parallel I/O perfor-
mance.

The rest of the paper is organized as follows. Section 2
describes our model of parallel I/O and the scheduling prob-
lem. Section 3 presents our algorithms. Section 4 reports
the experimental results, and Section 5 gives concluding re-
marks.

2. Parallel I/O Scheduling

We consider parallel systems in which processors are
connected by a complete network. There are two kinds of
processors: clients and servers, and every client can com-
municate with every server. Each client has a queue of data
transfer requests (reads or writes) destined for the servers. A
client or a server can handle at most one data transfer at any
given time. The data transfers can be of arbitrary lengths
and can be scheduled in any order. The goal is to process all
requests as fast as possible without violating the “one data
transfer at a time” constraint.

The scheduling problem can be modeled by a bipartite
graph in which the vertices on the left represent clients (de-
noted by Ci) and those on the right represent servers (de-
noted by Sj). An edge is placed between Ci and Sj if a data
in Sj is requested by the client Ci. There is no time depen-
dence among the requests.

Figure 2(a) illustrates a system with two clients and three
servers. Client C1 and C2 each has two requests so that there
are four data transfers, represented by four edges T1, T2, T3

and T4, with data transfer time 30, 10, 10, and 20 respec-
tively. A conflict exists at server S2 which is the target of
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Figure 2. An example of data request pattern
and two possible I/O schedules.

both T2 and T3. Figure 2(b) shows a possible schedule for
this bipartite graph. T1 and T4 are both scheduled to start si-
multaneously at the beginning. This is legal because T1 and
T4 share neither client nor server. T2 cannot start until T1

finishes since they are from the same client C1. Similarly,
T3 can only start after T2 finishes because they access the
same server S2. This schedule results in a total time of 50
(Figure 2(b)). A better schedule can be obtained by schedul-
ing T1 and T3 first and then T2 and T4, as shown in Fig-
ure 2(c), in which the total time is reduced to 40.

The parallel I/O scheduling problem is to schedule data
transfer events so as to minimize the overall time, under the
“one data transfer at a time on each node” constraint. This
problem is shown to be NP-complete.

PIO SCHEDULE: Given n clients (C1, ..., Cn), m servers
(S1, ..., Sm), a deadline T , and a n × m matrix W , where
Wi,j is the time for the data transfer between Ci and Sj . Is
there a schedule with completion time less than or equal to
T ?

Theorem 1 PIO SCHEDULE is NP-Complete for m > 2.

Proof. The theorem can be proved by showing
PIO SCHEDULE and the open shop scheduling prob-
lem [10] are equivalently difficult. The open shop prob-
lem consists of m machines and n jobs. Each job has m
independent tasks to be executed by each of the m ma-
chines, that is, machine i performs task tj,i of job j, for
1 ≤ j ≤ n and 1 ≤ i ≤ m. There is no precedence con-
straint among the tasks. However, each machine can
work on only one job at a time, and each job can be pro-
cessed by only one machine at a time. Given the exe-
cution time tj,i for all i and j, the goal is to schedule
the tasks on the machines so as to minimize the comple-
tion time. This problem is known to be NP-Complete for
m > 2 [10]. The PIO SCHEDULE problem can be mod-
eled as an open shop problem if we set the time to 0 for
those client-server pair between which there is no data
transfer.

3. Scheduling Algorithms

3.1. Centralized Scheduling Algorithms

Our solutions to the PIO SCHEDULE are based on
weighted bipartite matching and greedy heuristics.

3.1.1. Maximum Weight Matching (MWM) A match-
ing in a bipartite graph represents a valid parallel data trans-
fer step. A maximum matching (i.e. a matching with max-
imum cardinality) represents a valid parallel data transfer
step with highest parallelism. A matching-based scheduling
algorithm finds a maximum matching in the graph, deletes
the matching from the graph, and then repeats the process
until all the edges are removed.

The Maximum Weight Matching (MWM) algorithm starts
with a matching with maximum sum of weights. The likely
result is that data transfer requests with larger weights will
be scheduled earlier than the ones with smaller weights.
Also, by maximizing the sum of weights, maximum amount
of data transfers will be grouped together, thus reducing idle
cycles.

3.1.2. Earliest Completion First (ECF) The MWM algo-
rithm only considers data transfer time of a request, regard-
less of whether the client and server of that request is ready
to serve the request. Therefore, MWM may cause unneces-
sary “holes” in the schedule, which will delay the comple-
tion of a batch of requests. We propose a new algorithm,
Earliest Completion First (ECF), that takes both the avail-
able time of clients and servers and the completion time of
I/O requests into consideration. Available time and comple-
tion time are defined as follows.

Available time. The available time of a processor p is
the earliest time at which processor p can execute a new
data transfer. Each client i maintains an available time
CAvail(i) and each server j maintains an available time
SAvail(j). Initially all CAvail(i) and SAvail(j) are set
to zeros.

Completion time. The completion time, CompleteT ime(i, j, w),
of data transfer of length w, between client i and server j,
is the earliest time the data transfer can complete.

CompleteT ime(i, j, w) = max{CAvail(i), SAvail(j)}+w
(1)

During ECF scheduling each client i maintains a set of
servers that need to transfer data to i (denoted by si). Ini-
tially, si contains all the servers that need to transfer data
to client i. The algorithm proceeds as follows. In each it-
eration, the algorithm chooses the pending data transfer re-
quest (i, j, w) with the earliest completion time as the next
new task. It then updates the available time of client i and
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server j, and removes j from the server set si. This pro-
cess repeats until all si’s become empty. Figure 3 gives the
pseudo code of ECF.

Algorithm ECF:
Repeat until all s_i become empty

Find client i and server j such that data transfer
(i,j,w) has the earlieast completion time.

The new pair (i,j) will be scheduled at time t,
where t = max(CAvail(i), SAvail(j))

// Update the available time of client i and server j
CAvail(i) = t + w
SAvail(j) = t + w
Remove j from s_i

end repeat

Figure 3. The pseudo code of Earliest Com-
pletion First (ECF) algorithm.

3.1.3. Effectiveness of Centralized Scheduling Al-
gorithms We implement MWM and ECF algorithms
and conduct experiments on a Pentium-III PC clus-
ter that has Myrinet interconnect and a IDE disk attached
to each node. Both algorithms improve parallel I/O per-
formance by 35% to 40%, compared against a random
selection algorithm. Both MWM and ECF yield paral-
lel I/O performance close to the optimal result achieved
by an exhausted search; within 4% for certain parame-
ter choices. In this paper, we will use MWM and ECF (both
use centralized control) as the comparison basis for our dis-
tributed scheduling algorithms.

3.2. Distributed Scheduling of Parallel I/O

In many distributed environments, global information
about I/O requests is not centrally available and it is too
costly for clients (and similarly servers) to share or ex-
change information between them. To eliminate the need
of global information for scheduling purposes, we propose
a distributed load balancing algorithm and a distributed
greedy algorithm for scheduling I/O requests using only
a small number of rounds of bidding between clients and
servers.

The distributed algorithms are based on a distributed,
two-step bidding process. During the first step, each client
selects one of its requests and sends a bidding proposal to
the associated server. In the second step, each server re-
solves conflicts by selecting one of the bidding proposals
it received and sending back an acceptance message. Bid-
ding proposals from other clients are rejected. The accepted
I/O request is appended to an ordered list on the associ-
ated client and the server respectively. When every bid-
ding client has received an acknowledgment message (ac-

ceptance or rejection) from the associated server, the algo-
rithm proceeds to the next round of bidding. The same pro-
cess repeats until all the pending requests have been sched-
uled. After the scheduling phase completes, the clients send
out data transfer requests one by one as planned in their or-
dered lists.

3.2.1. Distributed Matching Algorithm The algorithm,
Maximum-Size/Maximum-Load (MS/ML), approximates the
centralized algorithm Maximum Weight Matching (MWM) in
a distributed environment.

Each client maintains a “current workload”, which is the
total amount of data in the pending requests in that client.
Initially, the current workload is the sum of all the data re-
quests in that client. Each time when a data request of a
client is accepted by a server, the current workload of that
client is decreased by the data size of that request.

During the first step of the bidding, each client selects
a pending request that has the largest data size, and sends
a bidding proposal to the associated server. The proposal
contains both the request and the current workload of that
client. In the second step, each server resolves conflicts by
selecting the bidding proposal from which the client has the
largest workload, and it then appends the selected data re-
quest to its ordered list and sends back an acceptance (rejec-
tion) message to the chosen (rejected) clients. Upon receiv-
ing the acceptance message, the selected client appends the
data request to its ordered list and updates its current work-
load accordingly. This maximum size selection on the client
side and maximum load selection on the server side increase
the chance that larger data transfers will be scheduled ear-
lier than smaller ones, and that the data transfers with sim-
ilar sizes will likely be scheduled simultaneously, thus re-
ducing idle cycles.

3.2.2. Distributed Greedy Algorithm The algorithm,
Minimum-Size/Earliest-Completion-First (MS/ECF), ap-
proximates the centralized algorithm Earliest Completion
First (ECF) in a distributed environment. Central to the al-
gorithm is an efficient and distributed scheme for maintain-
ing the available times that allows fast selection of requests
that could complete at the earliest time.

Similar to the centralized ECF algorithm, each client i
maintains an available time CAvail(i) and each server j an
available time SAvail(j). Initially, all CAvail(i) and SAvail(j)
are set to zeros. In addition, each server j maintains a client
set Cj that will request data from j, and each client i main-
tains a server set Si that i will request data from.

The distributed MS/ECF algorithm also has two steps for
each bidding round. During the first step, each client i se-
lects a server j from si from which i will request the small-
est amount of data, and sends a bidding proposal to server
j. The proposal contains both the request and the available
time of client i. In the second step, each server resolves con-
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flicts by selecting the bidding proposal that has the earliest
completion time. The completion time of a bidding client
can be computed by Equation 1 since the available time
and data size of the client are known to the server once
the proposal is received. The server then appends the se-
lected data request to its ordered list of data transfer, up-
dates its available time SAvail(j), and sends back its avail-
able time in an acceptance (rejection) message to the chosen
(rejected) clients. Upon receiving the acceptance message,
the selected client appends the data request to its ordered list
of data transfers and updates its available time CAvail(i) ac-
cordingly. Note that the available times are exchanged be-
tween clients and servers through the bidding proposals and
the acceptance/rejection messages, thus the MS/ECF algo-
rithm does not require additional message passing rounds.
Figure 4 gives the pseudo code of MS/ECF.

Algorithm MS/ECF:

On each client i:
Repeat until all S_i become empty

Select data transfer (i,j,w) that has
the smallest size w.

Send bidding proposal (i,j,w) to server j
and wait for accept/reject message.

if proposal accepted
then the new pair (i,j) will be scheduled
at time t = max(CAvail(i),SAvail_from(j))

Remove j from S_i.
// update client available tim

CAvail(i) = t + w
end repeat

On each server j:
Repeat until all C_j become empty

Wait for |C_j| bidding proposals and choose
client i such that data transfer (i,j,w)
has the earliest completion time.

The communication between i and j will be
scheduled at time t, where
t = max(CAvail_from(i), SAvail(j)).

Send accept message and SAvail(j) to client i.
Send reject message and SAvail(j) to clients

in C_j - {i}

Remove i from C_j.
// update server available time

SAvail(j) = t + w

end repeat

Figure 4. The pseudo code of Minimum-
Size/Earliest-Completion-First (MS/ECF) al-
gorithm.

4. Experimental Results

We conducted simulations to compare the performance
of our distributed algorithms with the best distributed algo-
rithm, Highest Degree First (HDF), developed by Durand
et. al. [9], for scheduling parallel I/O with non-uniform data
transfer sizes.
HDF [9] is a distributed algorithm based on edge color-

ing. Data transfers are divided into units of fixed-size blocks
and are handled one block at a time. Each client selects one
of its requests uniformly at random and sends its id and cur-
rent degree to the associated server. Each server grants the
request of the highest degree client, with ties broken arbi-
trarily.

The simulation parameters include network latency and
bandwidth, disk latency and bandwidth, synchronization
cost, and buffer size. These parameters are obtained exper-
imentally from a 32-node Pentium-III cluster with Myrinet
interconnects and IDE disks. In all of the experiments, we
fix the number of clients to be 256. For our study, we in-
vestigate the impact of number of servers, the ratio of busy
servers and the ratio of large-size data transfers on the per-
formance of different scheduling algorithms.

We study the impact of biased I/O on the performance
of the scheduling algorithms by varying the ratio of busy
servers (RB) from 0% to 50%. In our experiments a non-
busy server receives an average of 10 requests and a busy
server received 40 to 50 times more data transfer requests
than a non-busy server. The busy servers are chosen ran-
domly from the set of all servers. When the ratio of busy
server is set to 0, there will be no hot spot and all the servers
receive approximately equal number of requests. As the ra-
tio of busy server increases, the total number of data re-
quests also increases.

We also study the impact of data size on the performance
of the scheduling algorithms. In our experiments, data trans-
fers are a blend of small and large data requests. Large data
sizes are chosen based on a uniform distribution function in
the range of 0.95*32MB to 1.05 *32MB, and small sizes
are chosen from the range of 0.95*128KB to 1.05*128KB.

We use throughput instead of execution time as the mea-
surement metric of performance since the data size, the
number of data requests, and the number of servers vary in
our experiments. The throughput is defined by M/T , where
M is the total data size of the requests and T is the par-
allel completion time of all requests, including scheduling
and data transfer time. Each data point in the performance
figures is the average of 100 independent runs.

4.1. Effects of the Number of Servers

We vary the number of servers (NS) from 8 to 128 while
the values of other parameters remain fixed. The block size

Proceedings of the 2005 11th International Conference on Parallel and Distributed Systems (ICPADS'05) 
0-7695-2281-5/05 $20.00 © 2005 IEEE 



(PS) used for HDF in dividing data requests is 32k. Figure 5
shows that MS/ML and MS/ECF outperform HDF by a fac-
tor of 200% to 500%. The improvement increases as the
number of servers increases. Furthermore,MS/ML performs
the best when the ratio of large data transfers is low (e.g.
RL=0.1, as in Figure 5(a) and (c)), while MS/ECF yields
the best performance when the ratio of large data transfers
is high (e.g. RL=0.8, as in Figure 5(b) and (d)).
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Figure 5. Parallel I/O throughput under differ-
ent number of servers.

4.2. Effects of the Ratio of Busy Servers

In our simulation we vary the ratio of busy servers from
0.1 to 0.5 and fix the value of other parameters. As Figure 6
indicates, both MS/ML and MS/ECF are superior to HDF in
all cases. The improvement increases when the ratio of busy
servers increases. Furthermore, when the number of servers
is small (e.g. NS=32, as in Figure 6(a) and Figure 6(c)),
MS/ML and MS/ECF are competitive to each other. In sys-
tems with more servers (e.g. NS=128), MS/ML performs
better than MS/ECF when there are fewer large data re-
quests (e.g. RL= 0.1, as in Figure 6(b)), while MS/ECF is
better than MS/ML when there are more large data requests
(e.g. RL = 0.8, as in Figure 6(d)).

4.3. Effects of the Ratio of Large Data Transfers

We also vary the ratio of large data transfers and fix
the values of other parameters. Figure 7 shows that both
MS/ML and MS/ECF perform better than HDF by a factor
of 150% to 800%. The speed-up factor increases when the
ratio of large data transfers increases. A possible reason is
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Figure 6. Parallel I/O throughput under differ-
ent ratio of busy servers.

that when there are more large data transfers, HDF gener-
ates more bidding requests and thus requires more rounds of
bidding, transmission, and synchronization, which in turn
increase communication overheads. Furthermore, MS/ML
performs better than MS/ECF until the ratio of large data
transfers (RL) reaches a threshold value, and beyond that
point MS/ECF becomes superior to MS/ML. This is consis-
tent with those results shown in Figure 5 and Figure 6.
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Figure 7. Parallel I/O performance under dif-
ferent ratio of large requests

4.4. Summary of Results

The three sets of experiments show that both MS/ML and
MS/ECF yield better performance than HDF in all cases.
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MS/ML and MS/ECF also have good scalability in large sys-
tems (Figure 5), and are stable in non-uniform data trans-
fer patterns (Figure 6). Furthermore,MS/ECF performs bet-
ter when most of the requests are of large data sizes, while
MS/ML is more suitable for data transfers with smaller sizes
(Figure 7).

5. Conclusion

In this paper we present two distributed algorithms
to schedule parallel data transfers of non-uniform sizes.
The Maximum-Size/Maximum-Load (MS/ML) heuristic fa-
vors processors with heavy I/O load and the Minimum-
Size/Earliest-Completion-First (MS/ECF) takes available
time of the processors into consideration in order to re-
duce idle cycles in data transfers. We measure the comple-
tion time (including scheduling time and data transfer time)
required to complete a set of data transfers with these al-
gorithms, and evaluate these two approaches. Our experi-
mental results show that both algorithms achieve good per-
formance. When compared with the results achieved by
their centralized counterparts (the Maximum Weight Match-
ing (MWM) algorithm and the Earliest Completion First
(ECF) algorithm), both MS/ML and MS/ECF yield par-
allel performances within 6% of the centralized solu-
tions.

We also compare the performance of our algorithms with
the Highest Degree First (HDF) algorithm, which handles
non-uniform data transfers by dividing them into blocks of
fixed-size, which are then scheduled and transferred one at
a time. Experimental results show that our algorithms re-
quire both less scheduling and data transfer time, resulting
in a better overall parallel I/O performance. Our simulations
also show that MS/ML is more suitable for parallel I/O with
lighter data transfer traffic, while MS/ECF is more suitable
for parallel I/O with heavy data transfer traffic.
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