Course: Special topics on graph algorithms

Spring semester, 2004

Thursday 14:20 ¡V 17:20, 409 CSIE Building.

3 credits

Web site: http://www.csie.ntu.edu.tw/~kmchao/tree04spr

Instructor: Kun-Mao Chao (»¯©[­Z)

 

Prerequisites: Some basic knowledge on algorithm development is required. Background in approximation algorithms is welcome but not required for taking this course.

 

Preliminary course outlines

 

****** Notice that our midterm exam will be held in Room 105 (NOT in the classroom we used to be) at 14:20, April 15, 2004. ******

 

Coursework:

Midterm exam (45%)

Oral presentation of selected topics or papers (40%)

Homework and class participation (15%)

 

Our classmates ¡K

        Classmates (I) (left)

        Classmates (II) (middle)

        Classmates (III) (right)

        Classmates (IV) (standing)

        Classmates (V) (newcomers)

        Classmates (VI) (more)

        Classmates (VII) (more and more)

        Classmates (VIII) (more3)

        Classmates (IX) (more4)

 

Magic shows in our break: (March 11, 2004)

¥¨«ÛÀM¤j®v

»¯¦Ñ¥ý·Q¤@±iµP

³o±i¤Ï­±¬O¤£¬O»¯¦Ñ·Qªº©O¡H

¯uªº­C¡I¤Ó¯«¤F¡I»¯¦Ñ¥u¦n´h¦b¨ºÃä^_^

¥¨¤j®v·í³õ¤S²q¹ï°¨¼w¤å·Qªº¬O¶Â®ç¤»

 

Class PowerPoint slides:

        First class

        Counting Spanning Trees

        Minimum Spanning Trees

        Shortest-Paths Trees

        Routing Load (by §Ó«Å)

        Minimum Routing Cost Spanning Trees

        upper_bound.jpg

        2&3stars.jpg

 

Class notes:

Counting Spanning Trees

Minimum Spanning Trees

Shortest-Paths Trees

A note on a 2-approximation algorithm for the MRCT problem

A note on 15/8 & 3/2-approximation algorithms for the MRCT problem

A note on a polynomial time approximation scheme for the MRCT problem

A note on optimal communication spanning trees (bonus points here)

A note on eccentricities, diameters, and radii

Wu, B. Y., Chao, K. -M. and Tang, C. Y. , 2000, ¡§Approximation Algorithms for the Shortest Total Path Length Spanning Tree Problem,¡¨ Discrete Applied Mathematics, 105: 273-289.

Wu, B. Y., Lancia, G., Bafna, V., Chao, K. -M., Ravi, R. and Tang, C. Y. , 2000, A Polynomial-Time Approximation Scheme for Minimum Routing Cost Spanning Trees, SIAM Journal on Computing, 29: 761-778.

Notes by °û¹ä

¡@

 

Class presentations:

1.      Maximum number of team members: 6

2.      Each member is required to present in turn;

3.      Revised slides should be sent to me one week after the presentation;

4.      Every student is required to submit a brief note right after the presentation;

5.      Questions in class are always welcome;

 

Selected papers for presentation:

(These papers are very tough. Be prepared.)

4/22

V. King. A simpler minimum spanning tree verification algorithm. Algorithmica, 18:263¡V270, 1997.

³¯«Ø§» ³ÅµY´¼ ªL®Ñ¥­ ²ø´]µq ±i©µ¸t
Slides

 

4/29

B. Chazelle. A minimum spanning tree algorithm with inverse-Ackermann type complexity. J. ACM, 47:1028¡V1047, 2000.

¦¿¬Õ§» §d¥ú­õ ³¯«Û§»

S. Pettie and V. Ramachandran. An optimal minimum spanning tree algorithm. J. ACM, 49:16¡V34, 2002.

§E®a¿³ Áé¦Ü¿Å ±iºÑ®S

Slides_1

Slides_2

 

5/6

D. R. Karger, P. N. Klein, and R. E. Tarjan. A randomized linear-time algorithm to find minimum spanning trees. J. ACM, 42:321¡V328, 1995.

°¨¼w¤å ¶À©Ý¾§

Slides

 

5/13

M. Thorup. Undirected single-source shortest paths with positive integer weights in linear time. J. ACM, 46:362¡V394, 1999.
¥¨«ÛÀM ù°û¹ä ³\«í·ç

 

Slides

 

M. Thorup. On RAM priority queues. SIAM J. Comput., 30:86¡V109, 2000.

¾G´¼Ãh ¥Ðª¾¥» °Kºû§¡

Slides_1

Slides_2

Slides_3

 

5/20 No class

 

5/27

S. Khuller, B. Raghavachari, and N. Young. Low degree spanning trees of small weight. SIAM J. Comput., 25:355¡V368, 1996.

¸­«í«C °ª©sÂ@ »¯©[­Z

Slides

 

6/3

D-.Z Du and F.K. Hwang. A proof of the Gilbert-Pollak conjecture on the Steiner ratio. Algorithmica, 7:121¡V135, 1992.

¬x«T¦Ë ¬x¯EµÏ ½²ªÃ¿o ±ö´¶µØ
Slides

 

6/10

H.S. Connamacher and A. Proskurowski. The complexity of minimizing certain cost metrics for k-source spanning trees. Discrete Appl. Math., 131:113¡V127, 2003.

¼B®Ä­¸ ¥Ð¤åÀA ¿½§Ó亘 ªL®e¥ô ¤ý¥°­Û ­J²Qã

Slides

 

References (not required):

1.          Spanning Trees and Optimization Problems, by Bang Ye Wu and Kun-Mao Chao (2004), Chapman & Hall/CRC Press, USA.

2.          Related journal and conference papers