
OPTIMIZING PARALLEL APPLICATIONS

by

Shih-Hao Hung

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
1998

Doctoral Committee:

Professor Edward S. Davidson, Chair
Professor William R. Martin
Professor Trevor N. Mudge
Professor Quentin F. Stout

© 1998
All Rights Reserved
Shih-Hao Hung

ii

For my family.

iii

ACKNOWLEDGMENT

I owe a special thanks to my advisor, Professor Edward S. Davidson. Without his support,

guidance, wisdom, and kindly revising my writing, my study toward Ph.D degree and writing

this dissertation would have been much more painful. I would like to thank Prof. Gregory

Hulbert, Prof. William Martin, Prof. Trevor Mudge, and Prof. Quentin Stout for their advises

that helped improve this dissertation.

I would like to thank Ford Motor Company, Automative Research Ceter (U.S. Army-

TACOM), and the National Partnership for Advanced Computational Infrastructure (NPACI,

NSF Grant No. ACI-961920) for their generous financial support of this research. Parallel

computer time was provided by the University of Michigan Center of Parallel Computing

which is sponsored in part by NSF grant CDA-92-14296. Thanks to CPC staff, particularly

Paul McClay, Andrew Caird, and Hal Marshall, for providing excellent technical support on

the KSR, HP/Convex Exemplar, IBM SP2, and SGI PowerChallenger.

I have been fortunate to meet numerous marvelous fellow students in the Parallel Perfor-

mance Project (formerly the Ford Project). Lots of my work in this dissertation has been

inspired or based on their research. These are what I learned from these friends who have

been my officemates in 2214 EECS: hierarchical performance bounds models (Tien-Pao Shih,

Eric Boyd), synthetic workload (Eric Boyd), domain decomposition (Karen Tomko), relaxed

synchronization (Alex Eichenberger), and machine performance evaluation (Gheith Aban-

dah). Thanks to Ed Tam and Viji Srinivasan for letting me use their cache simulation tools.

Jude Rivers has been a bright, delightful fellow of mine, whose constant skeptical attitude

toward parallel computing has been one motivation for this research.

Thanks to many people, Ann Arbor has been a very wonderful place to me in the last 5

years. To people who I have played volleyball, basketball, softball, and majong with. To people

who lend me tons of anime to kill countless hours. To my family back in Taiwan for their full

support of my academic career over the years. To our cute little black cat, Ji-Ji, for bringing

lots of laughters to our home. Finally, to my lovely wife, Weng-Ling, for always finding ways

to make our lives here more interesting and meaningful.

iv

TABLE OF CONTENTS

DEDICATION .. ii

ACKNOWLEDGMENT ... iii

LIST OF TABLES .. vii

LIST OF FIGURES ...viii

CHAPTER

1 INTRODUCTION .. 1
1.1 Parallel Machines .. 3

1.1.1 Shared-Memory Architecture - HP/Convex Exemplar............... 4
1.1.2 Message-Passing Architecture - IBM SP2 5
1.1.3 Usage of the Exemplar and SP2.. 6

1.2 Parallelization of Applications .. 7

1.3 Problems in Developing Irregular Applications 9
1.3.1 Irregular Applications.. 9
1.3.2 Example - CRASH.. 10
1.3.3 Parallelization of CRASH .. 13
1.3.4 Performance Problems ... 14

1.4 Developing High Performance Parallel Applications........................... 15
1.4.1 Conventional Scheme... 16
1.4.2 Recent Trends... 17
1.4.3 Problems in Using Parallel Tools .. 18
1.4.4 The Parallel Performance Project ... 19
1.4.5 Goals of this Dissertation .. 21

1.5 Summary and Organization of this Dissertation 22

2 ASSESSING THE DELIVERED PERFORMANCE 24
2.1 Machine Performance Characterization... 25

2.2 Machine-Application Interactions... 29
2.2.1 Processor Performance... 29
2.2.2 Interprocessor Communications.. 32
2.2.3 Load Balancing, Scheduling, and Synchronization.................. 33

v

2.2.4 Performance Problems in CRASH-SP....................................... 35
2.2.5 Overall Performance .. 37

2.3 Performance Assessment Techniques... 38
2.3.1 Source Code Analysis ... 38
2.3.2 Profile-Driven Analysis.. 39
2.3.3 Trace-driven Analysis .. 48
2.3.4 Other Approaches... 51

2.4 Efficient Trace-Driven Techniques for Assessing the Communication
Performance of Shared-Memory Applications...................................... 52
2.4.1 Overview of the KSR1/2 Cache-Only Memory Architecture.... 52
2.4.2 Categorizing Cache Misses in

Distributed Shared-Memory Systems....................................... 55
2.4.3 Trace Generation: K-Trace .. 57
2.4.4 Local Cache Simulation: K-LCache... 62
2.4.5 Analyzing Communication Performance with the Tools.......... 67

2.5 Summary .. 70

3 A UNIFIED PERFORMANCE TUNING METHODOLOGY 72
3.1 Step-by-step Approach... 73

3.2 Partitioning the Problem (Step 1) ... 74
3.2.1 Implementing a Domain Decomposition Scheme..................... 75
3.2.2 Overdecomposition ... 78

3.3 Tuning the Communication Performance (Step 2)............................... 79
3.3.1 Communication Overhead ... 79
3.3.2 Reducing the Communication traffic .. 79
3.3.3 Reducing the Average Communication Latency 89
3.3.4 Avoiding Network Contention ... 93
3.3.5 Summary .. 95

3.4 Optimizing Processor Performance (Step 3)... 96

3.5 Balancing the Load for Single Phases (Step 4) 100

3.6 Reducing the Synchronization/Scheduling Overhead (Step 5).......... 101

3.7 Balancing the Combined Load for Multiple Phases (Step 6)............. 105

3.8 Balancing Dynamic Load (Step 7)... 106

3.9 Conclusion .. 110

4 HIERARCHICAL PERFORMANCE BOUNDS AND GOAL-DIRECTED
PERFORMANCE TUNING .. 116
4.1 Introduction.. 117

4.1.1 The MACS Bounds Hierarchy ... 117
4.1.2 The MACS12*B Bounds Hierarchy... 119
4.1.3 Performance Gaps and Goal-Directed Tuning........................ 120

vi

4.2 Goal-Directed Tuning for Parallel Applications................................. 120
4.2.1 A New Performance Bounds Hierarchy 120
4.2.2 Goal-Directed Performance Tuning .. 123
4.2.3 Practical Concerns in Bounds Generation.............................. 124

4.3 Generating the Parallel Bounds Hierarchy: CXbound 125
4.3.1 Acquiring the I (MACS$) Bound ... 125
4.3.2 Acquiring the IP Bound ... 126
4.3.3 Acquiring the IPC Bound... 127
4.3.4 Acquiring the IPCO Bound.. 128
4.3.5 Acquiring the IPCOL Bound ... 129
4.3.6 Acquiring the IPCOLM Bound .. 129
4.3.7 Actual Run Time and Dynamic Behavior 131

4.4 Characterizing Applications Using the Parallel Bounds................... 133
4.4.1 Case Study 1: Matrix Multiplication....................................... 133
4.4.2 Case Study 2: A Finite-Element Application.......................... 140

4.5 Summary .. 143

5 MODEL-DRIVEN PERFORMANCE TUNING .. 147
5.1 Introduction.. 147

5.2 Application Modeling ... 151
5.2.1 The Data Layout Module ... 154
5.2.2 The Control Flow Module .. 155
5.2.3 The Data Dependence Module... 168
5.2.4 The Domain Decomposition Module 170
5.2.5 The Weight Distribution Module... 173
5.2.6 Summary of Application Modeling.. 174

5.3 Model-Driven Performance Analysis .. 175
5.3.1 Machine Models.. 176
5.3.2 The Model-Driven Simulator... 176
5.3.3 Current Limitations of MDS ... 178

5.4 A Preliminary Case Study ... 180
5.4.1 Modeling CRASH-Serial, CRASH-SP, and CRASH-SD......... 181
5.4.2 Analyzing the Performance of CRASH-Serial, CRASH-SP,

and CRASH-SD .. 185
5.4.3 Model-Driven Performance Tuning... 194
5.4.4 Summary of the Case Study .. 216

5.5 Summary .. 216

6 CONCLUSION .. 219

REFERENCES ..222

vii

LIST OF TABLES

Table
1-1 Vehicle Models for CRASH... 13
2-1 Some Performance Specifications for HP/Convex SPP-1000........................ 26
2-2 The Memory Configuration for HP/Convex SPP-1000 at UM-CPC 26
2-3 Microbenchmarking Results for the Local Memory Performance

on HP/Convex SPP-1000 .. 27
2-4 Microbenchmarking Results for the Shared-Memory

Point-to-Point Communication Performance on HP/Convex SPP-1000 27
2-5 Collectable Performance Metrics with CXpa, for SPP-1600......................... 42
2-6 D-OPT Model for characterizing a Distributed Cache System. 56
2-7 Tracing Directives... 62
3-1 Comparison of Dynamic Load Balancing Techniques 109
3-2 Performance Tuning Steps, Issues, Actions and

the Effects of Actions. (1 of 2).. 114
4-1 Performance Tuning Actions and

Their Related Performance Gaps. (1 of 2) ... 145
5-1 A Run Time Profile for CRASH.. 182
5-2 Computation Time Reported by MDS.. 186
5-3 Communication Time Reported by MDS. .. 186
5-4 Barrier Synchronization Time Reported by MDS....................................... 186
5-5 Wall Clock Time Reported by MDS. .. 186
5-6 Hierarchical Parallel Performance Bounds (as reported by MDS)

and Actual Runtime (Measured).. 188
5-7 Performance Gaps (as reported by MDS). ... 188
5-8 Working Set Analysis Reported by MDS... 188
5-9 Performance Metrics Reported by CXpa

(Only the Main Program Is Instrumented). .. 191
5-10 Wall Clock Time Reported by CXpa... 191
5-11 CPU Time Reported by CXpa... 191
5-12 Cache Miss Latency Reported by CXpa... 191
5-13 Cache Miss Latency and Wall Clock Time for

a Zero-Workload CRASH-SP, Reported by CXpa.. 192
5-14 Working Set Analysis Reported by MDS for CRASH-SP, CRASH-SD,

and CRASH-SD2... 199
5-15 PSAT of Arrays Position, Velocity, and Force in CRASH........................... 207

viii

LIST OF FIGURES

Figure
1-1 HP/Convex Exemplar System Overview. .. 4
1-2 Example Irregular Application, CRASH. .. 11
1-3 Collision between the Finite-Element Mesh and an Invisible Barrier. 12
1-4 CRASH with Simple Parallelization (CRASH-SP). 15
1-5 Typical Performance Tuning for Parallel Applications. 16
2-1 Performance Assessment Tools.. 25
2-2 Dependencies between Contact and Update ... 36
2-3 CPU Time of MG, Visualized with CXpa... 43
2-4 Workload Included in CPU Time and Wall Clock Time. 45
2-5 Wall Clock Time Reported by the CXpa. ... 46
2-6 Examples of Trace-Driven Simulation Schemes. .. 50
2-7 KSR1/2 ALLCache. ... 53
2-8 An Example Inline Tracing Code. .. 59
2-9 A Parallel Trace Consisting of Three Local Traces....................................... 60
2-10 Trace Generation with K-Trace. .. 61
2-11 Communications in a Sample Trace. ... 64
2-12 Coherence Misses and Communication Patterns

in an Ocean Simulation Code on the KSR2... 69
3-1 Performance Tuning. .. 72
3-2 An Ordered Performance-tuning Methodology ... 73
3-3 Domain Decomposition, Connectivity Graph, and

Communication Dependency Graph .. 76
3-4 A Shared-memory Parallel CRASH (CRASH-SD) .. 76
3-5 A Message-passing Parallel CRASH (CRASH-MD),

A Psuedo Code for First Phase is shown. .. 78
3-6 Using Private Copies to Enhance Locality and Reduce False-Sharing 84
3-7 Using Gathering Buffers to Improve the Efficiency of Communications 85
3-8 Communication Patterns of the Ocean Code with Write-Update Protocol. 87
3-9 Communication Patterns of the Ocean Code with Noncoherent Loads....... 87
3-10 Example Pairwise Point-to-point Communication.. 93
3-11 Communication Patterns in a Privatized Shared-Memory Code................. 94
3-12 Barrier, CDG-directed Synchronization,

and the Use of Overdecomposition... 103
3-13 Overdecomposition and Dependency Table... 103
3-14 Approximating the Dynamic Load in Stages. .. 108
4-1 Performance Constraints and the Performance Bounds Hierarchy. 121

ix

4-2 Performance Tuning Steps and Performance Gaps. 123
4-3 Calculation of the IPCO, IPCOL, IPCOLM, IPCOLMD Bounds. 130
4-4 An Example with Dynamic Load Imbalance. .. 132
4-5 The Source Code for MM1. ... 134
4-6 Parallel Performance Bounds for MM1. .. 135
4-7 Performance Gaps for MM1. .. 135
4-8 The Source Code for MM2. ... 136
4-9 Parallel Performance Bounds for MM2. .. 136
4-10 Comparison of MM1 and MM2 for 8-processor Configuration. 137
4-11 Source Code for MM_LU .. 138
4-12 Performance Bounds for MM_LU .. 139
4-13 Performance Comparison of MM2 on

Dedicated and Multitasking Systems.. 139
4-14 Performance Bounds for the Ported Code.. 140
4-15 Performance Bounds for the Tuned Code.. 142
4-16 Performance Comparison between Ported and Tuned

on 16-processor Configuration ... 142
5-1 Model-Driven Performance Tuning. .. 149
5-2 Model-driven Performance Tuning. ... 151
5-3 Building an Application Model... 152
5-4 An Example Data Layout Module for CRASH.. 154
5-5 A Control Flow Graph for CRASH... 157
5-6 The Tasks Defined for CRASH... 158
5-7 A Hierarchical Control Flow Graph for CRASH. .. 159
5-8 An IF-THEN-ELSE Statement Represented in a CFG. 159
5-9 A Control Flow Module for CRASH. .. 160
5-10 Program Constructs and Tasks Modeled for CRASH................................. 162
5-11 A Control Flow Graph for a 2-Processor Parallel Execution

in CRASH-SP. ... 163
5-12 Associating Tasks with Other Modules for

Modeling CRASH-SP on 4 Processors. .. 164
5-13 Modeling the Synchronization for CRASH-SP.. 166
5-14 Modeling the Point-to-Point Synchronization, an Example. 167
5-15 A Data Dependence Module for CRASH. .. 169
5-16 An Example Domain Decomposition Module for CRASH-SP. 171
5-17 Domain Decomposition Schemes Supported in MDS. 172
5-18 An Example Domain Decomposition for CRASH-SD. 172
5-19 An Example Workload Module for CRASH/CRASH-SP/CRASH-SD......... 173
5-20 Model-driven Analyses Performed in MDS. .. 175
5-21 An Example Machine Description of

HP/Convex SPP-1000 for MDS. ... 176
5-22 A Sample Input for CRASH. .. 180
5-23 Decomposition Scheme Used in CRASH-Serial, SP, and SD. 184
5-24 Performance Bounds and Gaps Calculated for

CRASH-Serial, CRASH-SP, and CRASH-SD.. 187
5-25 The Layout of Array Position in the Processor Cache in CRASH-SD........ 190

x

5-26 Comparing the Wall Clock Time Reported by
MDS and CXpa. .. 194

5-27 Performance Bounds Analysis for CRASH-SP.. 195
5-28 Performance Bounds Analysis for CRASH-SP and SD............................... 196
5-29 Layout of the Position Array in the Processor Cache in CRASH-SD2....... 197
5-30 Comparing the Performance Gaps of CRASH-SD2 to Its Predecessors. ... 198
5-31 Comparing the Performance of CRASH-SD2 to Its Predecessors.............. 199
5-32 A Pseudo Code for CRASH-SD3... 200
5-33 Comparing the Performance Gaps of CRASH-SD3 to Its Predecessors. ... 201
5-34 Comparing the Performance of CRASH-SD3 to Its Predecessors.............. 202
5-35 A Pseudo Code for CRASH-SD4... 203
5-36 Comparing the Performance of CRASH-SD4 to Its Predecessors.............. 204
5-37 The Layout in CRASH-SD2, SD3, SD4, SD5, and SD6. 205
5-38 Comparing the Performance of CRASH-SD5 to CRASH-SD4. 206
5-39 Comparing the Performance of CRASH-SD6 to Previous Versions........... 208
5-40 Delaying Write-After-Read Data Dependencies By Using Buffers............ 209
5-41 The Results of Delaying Write-After-Read Data Dependencies

By Using Buffers... 210
5-42 A Pseudo Code for CRASH-SD7... 211
5-43 Performance Bounds Analysis for CRASH-SD5, SD6, and SD7. 212
5-44 A Pseudo Code for CRASH-SD8... 214
5-45 Data Accesses and Interprocessor Data Dependencies in CRASH-SD8.... 215
5-46 Performance Bounds Analysis for CRASH-SD6, SD7, and SD8. 215
5-47 Summary of the Performance of Various CRASH Versions. 217
5-48 Performance Gaps of Various CRASH Versions. .. 217

1

CHAPTER 1. INTRODUCTION

“A parallel computer is a set of processors that are able to work cooperatively to solve a

computational problem” [1]. Today, various types of parallel computers serve different usages

ranging from embedded digital signal processing to supercomputing. In this dissertation, we

focus on the application of parallel computing to solve large computational problems fast.

Highly parallel supercomputers, with up to thousands of microprocessors, have been devel-

oped to solve problems that are beyond the reach of any traditional single processor supercom-

puter. By connecting multiple processors to a shared memory bus, parallel servers/

workstations have emerged as a cost-effective alternative to mainframe computers.

While parallel computing offers an attractive perspective for the future of computers, the

parallelization of applications and the performance of parallel applications have limited the

success of parallel computing. First, applications need to be parallel or parallelized to take

advantage of parallel machines. Writing parallel applications or parallelizing existing serial

applications can be a difficult task. Second, parallel applications are expected to deliver high

performance. However, more often than not, the parallel execution overhead results in unex-

pectedly poor performance. Compared to uniprocessor systems, there are many more factors

that can greatly impact the performance of a parallel machine. It is often a difficult and time-

consuming process for users to exploit the performance capacity of a parallel computer, which

generally requires them to deal with limited inherent parallelism in their applications, ineffi-

cient parallel algorithms, overhead of parallel execution, and/or poor utilization of machine

resources. The latter two problems are what we intend to address in this dissertation.

Parallelization is a state-of-the-art process that has not yet been automated in general.

Most programmers have been trained in and have experience with serial codes and there exist

many important serial application codes that could well benefit from the performance

increases offered by parallel computers. Automatic parallelization is possible for loops where

data dependency can be analyzed by the compiler. Unfortunately, the complexity of interpro-

2

cedural data flow analysis often limits automatic parallelization to basic loops without proce-

dure calls. Problems can occur even in these basic loops if, for example, there exist indirect

data references such as pointers or indirectly-indexed arrays. Fortunately, many of those

problems are solvable with some human effort, especially from the programmers themselves,

to assist the compiler.

Regardless of whether parallelization is automatic or manual, high performance parallel

applications are needed to better serve the user community. So far, while some parallel appli-

cations do successfully achieve high delivered performance, many others only achieve a small

fraction of peak machine performance. It is often beyond the compiler’s or the application

developer’s ability to accurately identify and consider the many machine-application interac-

tions that can potentially affect the performance of the parallelized code. Over the last several

decades, during which parallel computer architectures have constantly been modified and

improved, tuned application codes and software environments for these architectures have

had to be discontinued and rebuilt. Different application development tools have not been well

integrated or automated. The methodology to improve software performance, i.e. performance

tuning, like parallelization, has never been mature enough to reduce the tuning effort to rou-

tine work that can be performed by compilers or average programmers. Poor performance and

painful experiences in performance tuning have greatly reduced the interest of many pro-

grammers in parallel computing. These problems must be solved to permit routine develop-

ment of high performance parallel applications.

Irregular applications [2] (Section 1.3), including sparse problems and those with unstruc-

tured meshes, often require more human parallel programming effort than regular applica-

tions, due to their indirectly indexed data items and irregular load distribution among the

problem subdomains. Most full scale scientific and engineering applications exhibit such

irregularity, and as a result they are more difficult to parallelize, load balance and optimize.

Due to the lack of systematic and effective performance-tuning schemes, many irregular

applications exhibit deficient performance on parallel computers. In this dissertation, we aim

to provide a unified approach to addressing this problem by integrating performance models,

performance-tuning methodologies and performance analysis tools to guide the paralleliza-

tion and optimization of irregular applications. This approach will also apply to the simpler

problem of parallelizing and tuning regular applications.

3

In this chapter, we introduce several key issues in developing high performance applica-

tions on parallel computers. Section 1.1 classifies parallel architectures and parallel program-

ming models and describes the parallel computers that we use in our experiments. Section 1.2

describes the process and some of the difficulties encountered in the parallelization of applica-

tions. In Section 1.3, we discuss some aspects of irregular applications and the performance

problems they pose. In Section 1.4, we give an overview of current application development

environments and define the goals of our research. Section 1.5 summarizes this chapter and

overviews the organization of this dissertation.

1.1 Parallel Machines

There are various kinds of parallel computers, as categorized by Flynn [3]. We focus on

multiple instruction stream, multiple data stream (MIMD) machines. MIMD machines can be

further divided into two classes: shared-memory and message-passing. These two classes of

machines differ in the type and amount of hardware support they provide for interprocessor

communication. Interprocessor communications are achieved via different mechanisms on

shared-memory machines and message-passing machines. A shared-memory architecture

provides a globally shared physical address space, and processors can communicate with one

another by sharing data with commonly known addresses, i.e. global variables. There may

also be local or private memory spaces that belong to one processor or cluster of processors

and are protected from being accessed by others. In distributed shared-memory (DSM)

machines, logically shared memories are physically distributed across the system, and non-

uniform memory access (NUMA) time results as a function of the distance between the

requesting processor and the physical memory location that is accessed. In a message-passing

architecture, processors have their own (disjoint) memory spaces and can therefore communi-

cate only by passing messages among the processors. A message-passing architecture is also

referred to as a distributed-memory or a shared-nothing architecture.

In this section, we briefly discuss two cases that represent current design trends in

shared-memory architectures (the HP/Convex Exemplar) and message-passing architectures

(the IBM SP2). The Center for Parallel Computing of the University of Michigan (CPC) pro-

vides us with access to these machines.

4

1.1.1 Shared-Memory Architecture - HP/Convex Exemplar

The HP/Convex1 Exemplar SPP-1000 shared memory parallel computer was the first

model in the Exemplar series. It has 1 to 16 hypernodes, with 4 or 8 processors per hypernode,

for a total of 4 to 128 processors. Processors in different hypernodes communicate via four CTI

(Coherent Toroidal Interconnect) rings. Each CTI ring supports global memory accesses with

the IEEE SCI (Scalable Coherent Interface) standard [4]. Each hypernode on the ring is con-

nected to the next by a pair of unidirectional links. Each link has a peak transfer rate of

600MB/sec.

Within each hypernode, four functional blocks and an I/O interface communicate via a 5-

port crossbar interconnect. Each functional block contains two Hewlett-Packard PA-

RISC7100 processors [5] running at 100MHz, 2 banks of memory and controllers. Each pro-

cessor has a 1MB instruction cache and a 1MB data cache on chip. Each processor cache is a

1. Convex Computer Company was acquired by Hewlett-Packard (HP) in 1996. As of 1998, Convex is a division of HP
and is responsible for the service and future development of the Exemplar series.

Figure 1-1: HP/Convex Exemplar System Overview.

M P P

C
I/O Interface

hypernode 0

M P P

C

F.B. F.B. F.B.

I/O Interface

hypernode n

Functional Block
F.B. F.B. F.B.

5-port crossbar

5-port crossbar

Functional Block

F.B. - Functional Block
P - Processor

M - Memory
C - Controllers

CTI rings

M

M

5

direct-mapped cache with a 32-byte line size. Each hypernode contains 256MB to 2GB of

physical memory, which is partitioned into three sections: hypernode-local, global, and CTI-

cache. The hypernode-local memory can be accessed only by the processors within the same

hypernode as the memory. The global memory can be accessed by processors in any hypern-

ode. The CTIcaches reduce traffic on the CTI rings by caching global data that was recently

obtained by this hypernode from remote memory (i.e. memory in some other hypernode). The

eight physical memories in each hypernode are 8-way interleaved by 64-byte blocks. The basic

transfer unit on the CTI ring is also a 64-byte block.

The CPC at the University of Michigan was among the first sites with a 32-processor SPP-

1000 as the Exemplar series was introduced in 1994. In August, 1996, the CPC upgraded the

machine to an SPP-1600. The primary upgrade in the SPP-1600 is the use of more advanced

HP PA-RISC 7200 processors [6], which offer several major advantages over the predecessor,

PA-RISC 7100: (1) Faster clock rate (the PA7200 runs at 120MHz), (2) the Runway Bus - a

split transaction bus capable of 768 MB/s bandwidth, (3) an additional on-chip 2-KByte fully-

associative assist data cache, and (4) a four state cache coherence protocol for the data cache.

The newest model in the Exemplar series is the SPP-2000, which incorporates HP PA-

RISC 8000 processors [7]. The SPP-2000 has some dramatic changes in the architectural

design of the processor and interconnection network, which provide a substantial performance

improvement over the SPP-1600. Using HP PA-RISC family processors, the Exemplar series

runs a version of UNIX, called SPP-UX, which is based on the HP-UX that runs on HP PA-

RISC-based workstations. Thus, the Exemplar series not only maintains software compatibil-

ity within its family, but can also run sequential applications that are developed for HP work-

stations. In addition, using mass-produced processors reduces the cost of machine

development, and enables more rapid upgrades (with minor machine re-design or modifica-

tion), as new processor models become available.

1.1.2 Message-Passing Architecture - IBM SP2

The IBM Scalable POWERparallel SP2 connects 2 to 512 RISC System/6000 POWER2

processors via a communication subsystem, called the High Performance Switch (HPS). Each

processor has its private memory space that cannot be accessed by other processors. The HPS

is a bidirectional multistage interconnect with wormhole routing. The IBM SP2 at CPC has 64

6

nodes in four towers. Each tower has 16 POWER2 processor nodes. Each of the 16 nodes in

the first tower has a 66 MHz processor and 256MB of RAM. Each node in the second and third

towers has a 66 MHz processor and 128MB of RAM. The last 16 nodes each have a 160 MHz

processor and 1GB of RAM. Each node has a 64KB data cache and 32 KB instruction cache.

The line size is 64 bytes for the data caches and 128 bytes for the instruction caches.

The SP2 runs the AIX operating system, a version of UNIX, and has C, C++, Fortran77,

Fortran90, and High Performance Fortran compilers. Each POWER2 processor is capable of

performing 4 floating-point operations per clock cycle. This system thus offers an aggregate

peak performance of 22.9 GFLOPS. However, the fact that the nodes in this system differ in

processor speed and memory capacity results in a heterogeneous system which poses addi-

tional difficulties in developing high performance applications. Heterogeneous systems, which

often exist in the form of a network of workstations, commonly result due to incremental

machine purchases. As opposed to heterogeneous systems, a homogeneous system, such as the

HP/Convex SPP-1600 at CPC, uses identical processors and nodes, and this is easier to pro-

gram and load-balance for scalability. In this dissertation, we focus our discussion on homoge-

neous systems, but some of our techniques can be applied to heterogeneous systems as well.

1.1.3 Usage of the Exemplar and SP2

The HP/Convex Exemplar and IBM SP2 at the CPC have been used extensively for devel-

oping and running production applications, as well as in performance evaluation research.

Generally, shared-memory machines provide simpler programming models than message-

passing machines, as discussed in the next section. The interconnect of the Exemplar is

focused more on reducing communication latency, so as to provide faster short shared-mem-

ory communications. The SP2 interconnect is focused more on high communication band-

width, in order to reduce the communication time for long messages, as well as to reduce

network contention.

Further details of the Convex SPP series machines can be found in [8][9]. The perfor-

mance of shared memory and communication on the SPP-1000 is described in detail in

[10][11][12]. A comprehensive comparison between the SPP-1000 and the SPP-2000 can be

found in [13]. Detailed performance characterizations of the IBM SP2 can be found in

[14][15][16].

7

1.2 Parallelization of Applications

Parallelism is the essence of parallel computing, and parallelization exposes the parallel-

ism in the code to the machine. While some algorithms (i.e. parallel algorithms) are specially

designed for parallel execution, many existing applications still use conventional (mostly

sequential) algorithms and parallelization of such applications can be laborious. For certain

applications, the lack of parallelism may be due to the nature of the algorithm used in the

code. Rewriting the code with a parallel algorithm could be the only solution. For other appli-

cations, limited parallelism is often due to (1) insufficient parallelization by the compiler and

the programmer, and/or (2) poor runtime load balance. In any case, the way a code is parallel-

ized is highly related to its performance.

To solve a problem by exploiting parallel execution, the problem must be decomposed.

Both the computation and data associated with the problem need to be divided among the pro-

cessors. As the alternative to functional decomposition, which first decomposes the computa-

tion, domain decomposition first partitions the data domain into disjoint subdomains, and

then works out what computation is associated with each subdomain of data (usually by

employing the “owner updates” rule). Domain decomposition is the method more commonly

method used by programmers to partition a problem, because it results in a simpler program-

ming style with a parallelization scheme that provides straightforward scaling to different

numbers of processors and data set sizes.

In conjunction with the use of domain decomposition, many programs are parallelized in

the Single-Program-Multiple-Data (SPMD) programming style. In a SPMD program, one copy

of the code is replicated and executed by every processor, and each processor operates on its

own data subdomain, which is often accessed in globally shared memory by using index

expressions that are functions of its Processor IDentification (PID). A SPMD program is sym-

metrical if every processor performs the same function on an equal-sized data subdomain. A

near-symmetrical SPMD program performs computation symmetrically, except that one pro-

cessor (often called the master processor) may be responsible for extra work such as executing

serial regions or coordinating parallel execution. An asymmetrical SPMD program is consid-

ered as a Multiple-Programs-Multiple-Data (MPMD) program whose programs are packed

into one code.

8

In this dissertation, we consider symmetrical or near-symmetrical SPMD programs that

employ domain decomposition, because they are sufficient to cover a wide range of applica-

tions. Symmetrical or near-symmetrical SPMD programming style is favored not only because

it is simpler for programmers to use, but also because of its scalability for running on different

numbers of processors. Usually, a SPMD program takes the machine configuration as an

input and then decomposes the data set (or chooses a pre-decomposed data set if the domain

decomposition algorithm is not integrated into the program) based on the number of proces-

sors, and possibly also the network topology. For scientific applications that operate itera-

tively on the same data domain, the data set can often be partitioned once at the beginning

and those subdomains simply reused in later iterations. For such applications, the runtime

overhead for performing domain decomposition is generally negligible.

Parallel programming models refer to the type of support available for interprocessor

communication. In a shared-memory programming model, the programmers declare variables

as private or global, where processors share the access to global variables. In a message-pass-

ing programming model, the programmers explicitly specify communication using calls to

message-passing routines. Shared-memory machines support shared-memory programming

models as their native mode; while block moves between shared memory buffer areas can be

used to emulate communication channels for supporting message-passing programming mod-

els [8]. Message-passing machines can support shared-memory programming models via soft-

ware-emulation of shared virtual memory [17][18]. Judiciously mixing shared-memory and

message-passing programming models in a program can often result in better performance.

The HP/Convex Exemplar supports shared-memory programming with automatic paralleliza-

tion and parallel directives in its enhanced versions of C and Fortran. Message-passing librar-

ies, PVM and MPI, are also supported on this machine. The SP2 supports Fortran 90 and

High-Performance Fortran (HPF) [19] parallel programming languages, as well as the MPI

[20], PVM [21], and MPL message-passing libraries. Generally, parallelization with shared-

memory models is less difficult than with message-passing models, because the programmers

(or the compilers) are not required to embed explicit communication commands in the codes.

Direct compilation of serial programs for parallel execution does exist today [22][23][24],

but the state-of-the-art solutions are totally inadequate. Current parallelizing compilers have

some success parallelizing loops where data dependency can be found . Unfortunately, prob-

9

lems often occur when there exist indirect data references or function calls within the loops,

which causes the compiler to make safe, conservative assumptions, which in turn can severely

degrade the attainable parallelism and hence performance and scalability. This problem lim-

its the use of automatic parallelization in practice. Therefore, most production parallelizing

compilers, e.g. KSR Fortran [25] and Convex Fortran [26][27], are of very limited use for par-

allelizing application codes.

Interestingly, many of those problems can be solved by trained human experts. Use of

conventional languages enhanced with parallel extensions, such as Message-Passing Inter-

face (MPI), are commonly used by programmers to parallelize codes manually, and in fact

many manually-parallelized codes perform better than their automatically-parallelized ver-

sions. So far, parallel programmers have been directly responsible for most parallelization

work, and hence, the quality of parallelization today usually depends on the programmer’s

skill. Parallelizing large application codes can be very time-consuming, taking months or even

years of trial-and-error development, and frequently, parallelized applications need further

fine tuning to exploit each new machine effectively by maximizing the application perfor-

mance in light of the particular strengths and weakness of the new machine.

Unfortunately, fine tuning a parallel application, even when code development and main-

tenance budgets would allow it, is usually beyond the capability of today’s compilers and most

programmers. It often requires an intimate knowledge of the machine, the application, and,

most importantly, the machine-application interactions. Irregular applications are especially

difficult for the programer or the compiler to parallelize and optimize. Irregular application

and their parallelization and performance problems are discussed in the next section.

1.3 Problems in Developing Irregular Applications

1.3.1 Irregular Applications

Irregular applications are characterized by indirect array indices, sparse matrix opera-

tions, nonuniform computation requirements across the data domain, and/or unstructured

problem domains [2]. Compared to regular applications, irregular applications are more diffi-

cult to parallelize, load balance and optimize. Optimal partitioning of irregular applications is

an NP-complete problem. Compiler optimizations, such as cache blocking, loop transforma-

10

tions, and parallel loop detection, cannot be applied to irregular applications since the indirect

array references are not known until runtime and the compilers therefore assume worst-case

dependence. Interprocessor communications and the load balance are difficult to analyze

without performance measurement and analysis tools.

For many regular applications, domain decomposition is straightforward for programmers

or compilers to apply. For irregular applications, decomposition of unstructured domains is

frequently posed as a graph partitioning problem in which the data domain of the application

is used to generate a graph where computation is required for each data item (vertex of the

graph) and communication dependence between data items are represented by the edges. The

vertices and edges can be weighted to represent the amount of computation and communica-

tion, respectively, for cases where the load is nonuniform. Weighted graph partitioning is an

NP-complete problem, but several efficient heuristic algorithms are available. In our research,

we have used the Chaco [28] and Metis [29] domain decomposition tools, which implement

several algorithms. Some of our work on domain decomposition is motivated and/or based on

profile-driven and multi-weight weighted domain decomposition algorithms developed previ-

ously by our research group [2][30].

1.3.2 Example - CRASH

In this dissertation, an example application, CRASH, is a highly simplified code that real-

istically represents several problems that arise in an actual vehicle crash simulation. It is

used here for demonstrating these problems and their solutions. A simplified high level sketch

of the serial version of this code is given in Figure 1-2. CRASH exhibits irregularity in several

aspects: indirect array indexing, unstructured meshes, and nonuniform load distribution.

Because of its large data set size, communication overhead, multiple phase and dynamic load

balance problems, this application requires extensive performance-tuning to perform effi-

ciently on a parallel computer.

CRASH simulates the collision of objects and carries out the simulation cycle by cycle in

discrete time. The vehicle is represented by a finite element mesh which is provided as input

to the code, such as illustrated in Figure 1-3. Instead of a mesh, the barrier is implicitly mod-

eled as a boundary condition. Elements in the finite-element mesh are numbered from 1 to

11

Num_Elements. Depending on the detail level of the vehicle model, the number of elements

varies.

Variable Num_Neighbors(i) stores the number of elements that element i interacts

with (which in practice would vary from iteration to iteration). Array Neighbors(*,i)

points to the elements that are connected to element i in the irregular mesh as well as other

elements with which element i has come into contact during the crash. Type(i) specifies the

type of material of element i. Force(i) stores the force calculated during contact that will be

applied to element i. Position(i) and Velocity(i) store the position and velocity of ele-

ment i. Force, position, and velocity of an element are declared as type real_vector vari-

ables, each of which is actually formed by three double precision (8-byte) floating-point

numbers representing a three dimensional vector. Assuming the integers are 32-bits (4-bytes)

program CRASH

integer Type(Max_Elements),Num_Neighbors(Max_Elements)
integer Neighbor(Max_Neighbors_per_Element,Max_Elements)
real_vector Force(Max_Elements),Position(Max_Elements),

Velocity(Max_Elements)
real t, t_step
integer i,j,type_element

call Initialization

c Main Simulation Loop
t=0

c First phase: generate contact forces
100 do i=1,Num_Elements

 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
200 do i=1,Num_Elements

 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_elastic(i, Position(i), Velocity(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100
end

Figure 1-2: Example Irregular Application, CRASH.

12

Figure 1-3: Collision between the Finite-Element Mesh and an Invisible Barrier.

Time=Before Collision

Time=During Collision

Time=After Collision

13

each, the storage requirement, or the total data working set, for CRASH is about

(84+4*Max_Neighbor_per_Element)*Num_Elements bytes. In this dissertation, we assume

two different vehicle models; their properties are shown in Table 1-1.

The program calculates the forces between elements and updates the status of each ele-

ment for each cycle. In the first phase, the Contact phase, the force applied to each element is

calculated by calling Contact_force() to obtain and sum the forces between this element

and other elements with which it has come into contact. In second phase, the Update phase,

the position and velocity of each element are updated using the force generated in the contact

phase. Depending on the type of material, the Update phase calls Update_Plastic() or

Update_Elastic() for updating the position and velocity as a function of Force(i). Each

cycle thus outputs a new finite-element mesh which is used as input to the next cycle.

This example program shows irregularities in several aspects. First, objects are repre-

sented by unstructured meshes. Second, in the Contact phase, properties of neighbor elements

are referenced with indirect array references, e.g. Velocity(Neighbor(j,i)), referring to

the velocity of the j-th neighbor of element i. Third, the load is nonuniform because the load of

calculating the force for an element during the Contact phase depends on how many neigh-

bors each element has, and the load of updating the status of an element during the Update

phase depends on the type of element being updated.

1.3.3 Parallelization of CRASH

Even for codes as simple as CRASH, most parallelizing compilers fail to exploit the paral-

lelism in CRASH because of the complexity of analyzing indirect array references, such as

Velocity(Neighbor(j,i)), and procedure calls. The communication pattern needs to be

explicitly specified for a message-passing version, yet determining the pattern is not a trivial

Vehicle
Model Num_Elements Max_Neighbors_

per_Element
Working Set

(Mbytes)

Small 10000 5 1

Large 100000 10 12

Table 1-1: Vehicle Models for CRASH.

14

task. Fortunately, a shared-memory parallelization does not require the specification of an

explicit communication pattern, and hence is initially much easier to develop. Performance

tuning does, however, require some understanding of the communication pattern, in both

cases.

The parallelism in CRASH can quite easily be recognized by a parallel programmer: the

calculations for different elements within each phase can be performed in parallel, because

they have no data dependence. Manual parallelization of CRASH can be implemented by par-

allelizing the major loop in each phase (indexed by i). A straightforward, simple parallel ver-

sion of CRASH on HP/Convex Exemplar, CRASH-SP, is illustrated in Figure 1-4. Note that

the parallel directive, c$dir loop_parallel, is inserted ahead of each parallel loop.

By default, loop_parallel instructs the compiler to parallelize the loop by partitioning the

index into p subdomains: elements {1,2, ... N/p } are assigned to processor 1, elements

{ N/p+1 ... 2N/p } are assigned to processor 2, etc., where N is Num_Elements and p is the

number of processors used in the execution. Since this parallelization partitions the domain

into subdomains of nearly equal size, the workload will be evenly shared among the proces-

sors, if the load is evenly distributed over the index domain. However, for irregular applica-

tions like CRASH, this simple decomposition could lead to enormous communication traffic

and poor load balance due to the unstructured meshes and nonuniform load distribution.

More sophisticated domain decomposition algorithms are commonly used for partitioning the

unstructured meshes so that the communication traffic is reduced [30].

1.3.4 Performance Problems

In this dissertation, we focus on solving major performance problems resulting from irreg-

ular applications because they pose more difficult optimization problems and lack an effective

general method to guide the programmers toward achieving high performance. Once such

methods exist, regular applications may be handled as a degenerate case. These problems are

described in the next chapter and are addressed throughout this dissertation.

15

1.4 Developing High Performance Parallel Applications

Often, performance tuning is called hand tuning, which emphasizes the programer’s cen-

tral role in most performance tuning work. While many people hope that someday compiler

technology will automate most performance tuning work, most parallel programmers today

are directly responsible for a large portion of the performance tuning work, which often

requires extensive knowledge of the underlying hardware characteristics. Parallel program-

mers seem to spend more time poring over performance information and repeatedly modifying

the source code in a cut-and-try approach, rather than simply deciding how best to tune the

performance, and then simply doing it in one pass. In this section, we discuss this conven-

program CRASH-SP

integer Type(Num_Elements),Num_Neighbors(Num_Elements)
integer Neighbor(Max_Neighbor_per_Elements,Num_Elements)
real_vector Force(Num_Elements),Position(Num_Elements),

Velocity(Num_Elements)
real t, t_step
integer i,j,Num_Neighbors,type_element

call Initialization

c Main Simulation Loop
t=0

c First phase: generate contact forces
c$dir loop_parallel
100 do i=1,Num_Elements

 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
c$dir loop_parallel
200 do i=1,Num_Elements

 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_glass(i, Position(i), Velocity(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100
end

Figure 1-4: CRASH with Simple Parallelization (CRASH-SP).

16

tional scheme, recent trends, current problems, and our approach for developing high perfor-

mance applications.

1.4.1 Conventional Scheme

Figure 1-5 shows how performance tuning is typically done today. The compiler trans-

forms the source code into an executable code with optimizations derived from source-code

analysis and programmer written directives. Although, theoretically, compilers could accept

feedback from the execution and use it when deciding whether and how to apply certain opti-

mizations, such as during instruction scheduling [31][32], no effective feedback mechanism

exists today in any compiler that provides a sufficient amount of information to guide its opti-

mizations. Performance enhancement is the programmer’s responsibility to carry out, prima-

rily by revising the source code and modifying directives, perhaps with some help from

performance assessment tools.

The hardware details of a computer are usually hidden from the user by commonly used

programming models. Programmers may ignore many hardware issues that can greatly

degrade a code’s performance, even when substantial effort is spent varying the directives and

flag settings for an optimizing compiler. As a result, hand tuning is subsequently involved to

improve code performance, inefficient performance is accepted, or the parallel execution is

performance tools

programmer

application machine

compiler

Figure 1-5: Typical Performance Tuning for Parallel Applications.

17

abandoned altogether. Under this conventional scheme, the effort to tune a parallel applica-

tion, especially an irregular application, can be very time-consuming and/or ineffective. How-

ever, without proper tuning, peak performance on parallel computers, or even a respectable

fraction of peak, can be very difficult to achieve. It should be no surprise that few tools can be

used to facilitate the tuning, because for a long time, development of tools has been neglected

or discontinued due to the typically short life times of parallel machines. Poor performance

and painful experiences in performance tuning have greatly reduced the interest of many pro-

grammers in parallel computing. These are the major problems in a conventional parallel

application development environment.

1.4.2 Recent Trends

Until the early ‘90s, some optimistic researchers believed that parallelization could and

would soon be fully automated and fairly well optimized by future parallelizing compilers, and

some believed that parallel machines would then be able to carry out parallel execution fairly

efficiently with a minimum of hand tuning. Unfortunately, parallelization and performance

tuning turned out to be more difficult than they thought, and none of those expectations have

been satisfied. More and more researchers realize that (1) manual parallelization is necessary

and should be properly supported, and (2) the key to develop high performance applications

lies in a strong understanding of the interactions between the machine and the application,

i.e. machine-application interactions. Given these awareness, the parallel computing commu-

nity started several projects (e.g. the Parallel Tools Consortium, est. 11/93) to promote the

development of standardized application environments and performance tools to ease pro-

grammer’s burden and study machine-application interactions. Since then, more research has

been focused on improving parallel tools, such as the following, to form a better application

development environment:

• Standard Parallel Languages or Message-Passing Libraries, such as HPF [19] and MPI

[20], which enable programmers to develop machine-independent codes and encourage

vendors to optimize their machines for these languages. Among these new standards, MPI

has been widely supported on almost all message-passing machines and even most shared-

memory machines (e.g. HP/Convex Exemplar).

18

• Parallelized and Tuned Libraries, such as Convex LAPACK [33], which ease the program-

mers’ burden by parallelizing and fine-tuning commonly-used routines. Many scientific/

engineering applications can benefit from the availability of such libraries.

• Domain Decomposition Packages, such as Chaco [28] and Metis [29], which provide various

algorithms for decomposing irregular problem domains. With such packages, programmers

are likely to save a considerable amount of time that would otherwise be spent writing and

maintaining their own domain decomposition routines for irregular applications.

• Source-code Analyzers or Visualizers, such as APR Forge [34], which assist the users in

parallelizing existing applications by revealing the data dependencies or data flow in the

codes. Such tools directly assist the users, instead of attempting to accomplish automatic

parallelization with a parallelizing compiler.

• Performance Assessment Tools, such as CXpa [35] and IBM PV [36], which assist the users

in exploring the machine-application interactions in their applications. Performance

assessment tools can be further categorized into three groups: performance extraction/

measurement, performance evaluation/characterization, and performance visualization.

Performance extraction/measurement tools focus on finding specific events in the applica-

tion and measuring their impact on the performance. Performance evaluation/character-

ization tools analyze the application performance, characterize the performance, and

roughly identify the performance problems. Performance visualization tools provide a

friendly graphics interface to help the users access and understand performance informa-

tion.

Note that some of these parallel tools address the problems in parallelizing applications,

while some others, also known as performance tools, address the problems which limit the

application performance. Often, these two goals are both considered by one tool, since the way

that the code is parallelized is highly correlated with the application performance.

1.4.3 Problems in Using Parallel Tools

Recent development of parallel tools has considerably improved the application develop-

ment environment. However, current application development environments are still far from

satisfactory. Typical problems that we have experienced are described below:

19

1. Lack of Tools and Difficulty of Using the Tools: While many tools have resulted from aca-

demic research, machine vendors have not been aggressively developing performance

tools. According to the Ptools Consortium (http://www.ptools.org/): “Current parallel tools

do not respond to the specific needs of scientific users who must become quasi-computer

scientists to understand and use the tools”.

2. Lack of Tool Integration: Combining the use of different tools can be painful and tricky.

For example, feeding performance information from the CXpa to Metis requires a mecha-

nism to convert the performance data output from CXpa to a form that is accepted as

input to Metis. Due to the lack of integration, programmers still need to spend a substan-

tial amount of time in interfacing the use of tools. Such routine work should be automated

as much as possible, allowing the programmers simply to monitor the process and make

high-level decisions.

3. Unpredictable and Unreliable Tuning Methodologies: Programmers have been relying for

better or worse on their personal experiences and trial-and-error processes in their prac-

tice of performance tuning. The learning curve is tedious and time consuming with no

guarantee of how much if any performance improvement to expect for a particular appli-

cation. Furthermore, because the side-effects of one optimization applied to solve one

problem can expose or aggravate other problems, there are many cases where perfor-

mance problems cannot be solved individually.

4. Unsuitable for Dynamic Applications: For one application, performance tuning may need

to be repeated for different input data sets and different machines. Although integrating

the performance tuning mechanism into the runtime environment would ameliorate this

problem, runtime performance tuning is difficult to implement because performance tun-

ing is far from automatic. Most performance tuning tools, either cannot be, or are not inte-

grated into the runtime environment.

1.4.4 The Parallel Performance Project

The Parallel Performance Project (PPP) research group was established at the University

of Michigan (http://www.eecs.umich.edu/PPP/PPP.html) in 1992. The objective of our work

is to develop and implement automated means of assessing the potential performance of

applications on targeted supercomputers, high performance workstations and parallel com-

puter systems, identifying the causes of degradations in delivered performance, and restruc-

turing the application codes and their data structures so that they can achieve their full

20

performance potential. Many of the techniques presented in this dissertation are based on or

motivated by some previous or concurrent work in the PPP group, including:

• Experiences in Hand-tuning Applications: We have worked jointly with scientists and engi-

neers in developing high performance applications in various fields, including: (1) vehicle

crash simulation with the Ford Motor Company, (2) ocean simulation for the Office of

Naval Research, (3) modeling and simulation of ground vehicle with the Automotive

Research Center (http://arc.engin.umich.edu/) for the U.S. Army (TACOM), and are con-

tinuing work of this kind on (4) antenna design and scattering analysis with the Radiation

Laboratory at U. of Michigan (http://www.eecs.umich.edu/RADLAB/), (5) modeling soil

vapor extraction and bioventing of organic chemicals in unsaturated geological material

with the Environmental and Water Resources Engineering program at U. of Michigan

(http://www-personal.engin.umich.edu/~abriola/simulation.html) for the U.S. Environ-

mental Protection Agency, and (6) computer simulation of manufacturing processes of

materials and structures with the Computational Mechanics Laboratory (http://www-per-

sonal.engin.umich.edu/~kikuchi/) at U. of Michigan. This ongoing work is supported in

part by the National Partnership for Advanced Computational Infrastructure (NPACI)

(http://www.npaci.edu/) of the National Science Foundation.

• Machine Performance Evaluation: The PPP group has developed performance evaluation

methodologies (e.g. [37]) and tools (e.g. [38]) and has evaluated targeted high performance

workstations (IBM RS/6000 [39][40], HP PA-RISC, DEC Alpha) and parallel computer sys-

tems (KSR1/2 [41][42], IBM SP2 [14][15], HP/Convex Exemplar [11][12][13], Cray T3D).

The knowledge gained regarding target machines helps develop future machines and

machine-specific performance tuning techniques [43].

• Goal-Directed Performance Tuning: A machine-application hierarchical performance

bounds methodology has been developed to characterize the runtime overhead and guide

optimizations (e.g. [44][45][46][47][48][49]). Major optimization techniques developed in

the PPP group include data layout (e.g. [45][50]), restructuring data access patterns (e.g.

[51]), communication latency hiding (e.g. [52]), instruction scheduling (e.g. [53][54]), and

register allocation (e.g. [55][56]).

• Domain Decomposition Techniques and Advanced Synchronization Algorithms: Our expe-

riences show that irregular problem domains commonly exist in many scientific/engineer-

ing applications. The PPP group has evaluated the performance of several domain

decomposition packages, including Chaco [28] and Metis [29], for balancing the load in tar-

21

get applications. A profile-driven domain decomposition technique [30] and a multiple

weight (multiphase) domain decomposition algorithm [2] have been developed for balanc-

ing non-uniformly distributed computations in single-phase as well as multiple-phase

applications. Advanced synchronization algorithms, such as fuzzy barriers [57] and point-

to-point synchronization [58], have been studied and implemented to improve the load bal-

ance in target applications.

These techniques, together with other available tools, such as CXpa, CXtrace, and IBM

PV, constitute the current application development environment for our targeted machines.

While these techniques and tools have helped our performance tuning work in the PPP group,

the resulting application development environment still suffered from the problems that we

mentioned in Section 1.4.3 and led to the goals of this research.

1.4.5 Goals of this Dissertation

 In this dissertation, we discuss several new techniques that have been developed to

address the weaknesses within this application development environment. More importantly,

we present a unified approach to developing high performance applications by linking most of

these known techniques within a unified environment. We believe that this unified approach

will eventually lead to a well-integrated and fairly automated application development envi-

ronment. The following statements describe the general goals of our research and the scope of

this dissertation:

1. Develop New Tools and Improve Existing Tools: More techniques and tools are needed to

characterize the machine and the machine-application interactions. The user interface of

each tool should be designed so that it can be used by non-computer scientists with mini-

mal knowledge about the underlying computer architecture.

2. Develop a Unified Performance Tuning Methodology: To speed up the performance tuning

process and aim at making it more automated in the future, it would be best to develop a

systematic method for selecting among optimization techniques and applying them in a

proper order.

3. Provide an Environment for Programmers and Computer Architects to Work Jointly in

Developing Applications: Programmers often possess an intimate knowledge of the inher-

ent behavior of the underlying algorithms of their codes, while computer architects are

22

generally more familiar with machine characteristics. For tuning a large application,

direct communications between these two groups of people are generally both time-con-

suming and inefficient. We thus need an environment that helps programmers expose

their application behavior to computer architects.

4. Incorporate Runtime Performance Tuning within Applications: For optimizing applica-

tions whose behavior may not be discoverable at compile time, some performance tuning

should be carried out during runtime. To achieve this goal, proper runtime performance

monitoring support, well-integrated performance tools, and automatic performance tun-

ing algorithms are necessary. Although we cannot satisfy this goal without the coopera-

tion of computer manufacturers and software providers, this dissertation will lay the

groundwork for satisfying this goal.

1.5 Summary and Organization of this Dissertation

In this chapter, we have overviewed parallel machines, parallelization of applications,

common performance problems, and approaches to developing high performance parallel

applications, and we have discussed the weaknesses in current application development envi-

ronments. While most researchers focus on developing more parallel tools to help solve indi-

vidual parallelization/performance problems, we aim at an integrated suite of existing and

new tools and a unified approach to considering and solving the performance problems that

they expose. In the following chapters, we discuss the techniques that we have developed and

integrated to pursue these goals:

• Chapter 2 Assessing the Delivered Performance discusses the machine-application interac-

tions in a parallel system, how machine performance characterization and performance

assessment techniques can expose these relatively subtle interactions to help program-

mers visualize performance problems in their applications. We also present some innova-

tive techniques that we developed for analyzing communication patterns in cache-based

distributed shared-memory applications.

• Chapter 3 A Unified Performance Tuning Methodology summarizes our performance tun-

ing methodology: a unified, step-by-step performance tuning approach that logically inte-

grates various useful techniques that may be used to solve specific performance problems

in an irregular application. For each step, we identify certain key issues that concern the

23

performance tuning at that step, as well as specific tuning actions that are most appropri-

ate to solving these issues. The interactions among these issues, and actions that are vital

to effectively tuning the application, are clarified in this chapter.

• Chapter 4 Hierarchical Performance Bounds and Goal-Directed Performance Tuning fur-

ther extends previously developed goal-directed performance tuning work to more com-

pletely characterize a parallel application. This new performance characterization scheme

is partly automated on the HP/Convex Exemplar with the CXbound tool that we developed.

We explain how the performance bounds and the gaps between successive bounds can be

used in conjunction with the step-by-step performance tuning scheme discussed in Chapter

3 to tune an application more efficiently.

• Chapter 5 Model-driven Performance Tuning describes our approach to facilitating the

communications between programmers and performance tuning specialists and speeding

up the performance tuning process. We discuss how the application behavior exposed by

the programmers and performance assessment tools can be integrated to form application

models. These application models can be analyzed by the model-driven simulation tools

that we developed to model the application performance. Model-driven analysis guides per-

formance tuning specialists in tuning the application models and greatly reduces the num-

ber of tuning iterations that must be carried out explicitly on the actual application code.

This model-driven performance tuning methodology thus serves as a means to shorten the

application development time, and hopefully in the future, to tune the code dynamically

during runtime.

• Chapter 6 Conclusion concludes this dissertation by summarizing the key contributions of

this research and their significance. Some topics of further research that may be investi-

gated in the future are also presented.

24

CHAPTER 2. ASSESSING THE DELIVERED

PERFORMANCE

In the world of scientific computing, peak performance is an upper bound on the perfor-

mance of a computer system. However, users often find that there is a large gap between the

peak performance and the performance that their applications actually see, the delivered per-

formance. Without proper utilization of the hardware resources, applications can perform

very inefficiently. As the peak performance of parallel computers is approaching TeraFLOPS

(10 billion FLoating-Point Operations per Second), the computer architecture is increasingly

complex, and the performance gap is growing. Current compiler technology makes an effort to

close this gap, but still leaves much to be desired, especially for parallel computing.

The performance gap between peak performance and delivered performance is a complex

function of the machine-application interactions. The ability to observe detailed machine-

application interactions is necessary in order to determine the primary causes of the perfor-

mance gap, and subsequently resolve them by boosting delivered performance, reducing cost,

and finally accepting the remaining gap. Various public domain and commercial performance

assessment tools have been developed for gathering, analyzing, and visualizing application

performance. However, we have not seen any single tools or tool suites that provide complete

performance assessment at various needed levels of detail. In most cases that we have

encountered during our practice of performance tuning, we have had to find ways to integrate

the use of existing tools and often develop new tools in order to gain a sufficient assessment of

the delivered performance, relative to the aspects shown in Figure 2-1.

This chapter focuses on analyzing machine-application interactions for parallel applica-

tions. While the performance of a modern processor is relatively complex, the performance of a

parallel system, with the addition of communication and synchronization, is even more myste-

rious for most users. For a user to gain a sufficient understanding of the performance of an

application, the target machine must be well-characterized. For tuning the applications, the

25

characterization of the target machine forms a basis by providing the target machine’s perfor-

mance metrics and performance constraints. In Section 2.1, we discuss approaches to charac-

terizing the machine performance.

In Section 2.2, we categorize the machine-application interactions and discuss their corre-

lation with common performance problems. Section 2.3 categorizes existing performance

assessment techniques and discuss how they apply to observe specific machine-application

interactions and trace the performance problems in the application. Our research on efficient

communication performance analysis using trace-driven analysis is described in Section 2.4.

2.1 Machine Performance Characterization

A well-characterized machine makes it less difficult for programmers to develop high per-

formance applications on the machine. A good machine performance characterization gener-

ates useful information in two respects: (1) The characterization serves to identify

performance metrics that are important for modeling application performance on this

machine. Performance metrics, such as memory access time and communication latency, pro-

vide the basis for modeling the machine and thence for quantitative analysis of application

performance. (2) By analyzing the performance metrics, one may gain a sufficient under-

standing of the machine performance and develop certain guidelines on how to utilize the

machine effectively.

application

cache misses

pipeline stalls

communication overhead

synchronization wait
machine

performance
assessment
tools

Figure 2-1: Performance Assessment Tools.

performance assessment

26

There are a few ways that one might obtain a performance characterization of the target

machine:

1. Manufacturer/administrator’s specifications: The machine specifications from the manu-

facturer usually contain basic performance information. Some useful information also

comes from the system administrator, as the configuration of a particular machine may

vary. Table 2-1 and Table 2-2 list some major performance metrics of the HP/Convex SPP-

1000 as documented in [8] and the memory system configuration of the machine at the

Center of Parallel Computing at the University of Michigan.

Processor clock rate/cycle 100 MHz / 10 ns

Peak floating-point performance 200 M FLOPS

Processor cache size (data or instruction) 1 MByte

Processor cache line size 32 Bytes

Processor cache associativity 1

Processor cache access latency (data or instruction) ~ 10 ns

Number of processors, per hypernode 8

Local hypernode memory access latency ~ 500 ns

Processors-to-hypernode memory interconnection bandwidth 1.25 GByte/s

Remote hypernode memory access latency ~ 2000 ns

CTI bandwidth, per ring 600 MByte/s

Hypernode memory line size 64 Bytes

Table 2-1: Some Performance Specifications for HP/Convex SPP-1000

Number of Hypernodes 4

Hypernode memory size, per hypernode 1 GByte

Hypernode-local memory size, hypernode 0 578 MByte

Hypernode-global memory size, hypernode 0 272 MByte

Hypernode-local memory size, hypernode 1-3 322 MByte

Hypernode-global memory size, hypernode 1-3 528 MByte

CTIcache size, per hypernode 166 MByte

Table 2-2: The Memory Configuration for HP/Convex SPP-1000 at UM-CPC

27

2. Microbenchmarking: Microbenchmarking [12][59] characterizes the performance of the

target system with small specific microbenchmark programs that are designed to isolate

and characterize primitive operations in the system that commonly lie on the critical

path. Various microbenchmarks have been developed to characterize the performance of

particular operations or help decide on machine configurations. Results from microbench-

marks simulate the performance of primitive operations delivered by the system, includ-

ing the required machine operations and related software overhead. Tables 2-3 and 2-4

list some of the performance metrics of local memory and the shared-memory communica-

tion on HP/Convex SPP-1000 that have been characterized by using microbenchmarks

[12]. Note that the shared-memory performance is a function of the distance between the

requesting processor and the physical memory location that is accessed. Highest shared-

memory performance is attainable only if the data is present in a near memory (in the

same hypernode as the requesting processor) but not cached in any processor’s data cache.

Acquiring data from a far memory across the CTI ring has a latency of at least 9.1 ms.

Accessing a cached block requires an extra 0.7-0.9 ms for flushing the block back to the

shared-memory and modifying the cache status.

Transfer rate, read from processor cache 800 MByte/sec

Transfer rate, write to processor cache 400 MByte/sec

Local-hypernode memory access latency, read 55.4 cycles (average)=554ns

Local-hypernode memory access latency, write 63.3 cycles (average)=663ns

Local-hypernode memory access bandwidth, read 52 MB/sec

Local-hypernode memory access bandwidth, write 50 MB/sec

Table 2-3: Microbenchmarking Results for the Local Memory Performance
on HP/Convex SPP-1000

Distance Cached? Latency (ms) Transfer Rate (MByte/sec)

Near
No 1.3 23.5

Yes 2.0 15.4

Far
No 9.1 5.0

Yes 10.0 4.6

Table 2-4: Microbenchmarking Results for the Shared-Memory
Point-to-Point Communication Performance on HP/Convex SPP-1000

28

3. Benchmark suites: Benchmark suites, such as SPLASH/SPLASH-2 [60][61] and NAS

Parallel Benchmarks (NPB) [62] have been developed to resemble the workload of combi-

nations of commonly used routines (also known as kernels, e.g. FFT) and full applications.

The characteristics of benchmarks in SPLASH-2 vary in concurrency, load balance, work-

ing sets, temporal locality, communication-to-computation ratio, communication traffic,

spatial locality, and false sharing1. In [61], Woo et. al. show the use of SPLASH-2 for char-

acterizing a target machine qualitatively, by observing how the machine behavior changes

across different benchmarks.

4. Synthetic workload experiments: Methods for synthesizing parameterized, controllable

workloads have been developed to resemble various application workload in a parameter-

ized space [41][37][63]. In [41], a sparse matrix multiplication program is used to generate

synthetic workloads for evaluating communication performance on the KSR1. This work-

load generation is controlled by a few basic parameters: the number of processors, the

average number of point-to-point communications per processor, the degree of data shar-

ing, and the computation-to-communication ratio. With this approach, the communication

performance of the KSR1 was characterized by varying these four parameters.

Among these four methods, machine specifications and microbenchmarking directly char-

acterize the target machine quantitatively in terms of performance metrics, while benchmark

suites and synthetic workload experiments tend to characterize the machine qualitatively in

terms of its suitability for specific modes of usage. From the performance metrics, experienced

computer architects may notice weaknesses in the performance of the machine. Some qualita-

tive characterizations of the HP/Convex SPP-1000, which should be familiar to the applica-

tion developers, are as follows:

• From Table 2-1, one may notice that memory access latency varies from 10ns (hit in proces-

sor cache), to 500ns (miss in the processor cache, but found in the local hypernode mem-

ory), to 2000ns (miss in both the processor cache and the local hypernode memory, but

found in a remote hypernode memory). Since the latency differs so dramatically, cache uti-

lization should be a serious concern for achieving good application performance. The cache

and memory configurations in Table 2-1 and Table 2-2 are vital for applying data layout

techniques to improve the cache utilization.

1. False-sharing is further discussed in Section 3.3.

29

• From Table 2-4, we notice that the communication performance is highly sensitive to the

distance of communication. Near communications, which take place within a hypernode,

are about 4 to 7 times faster than far communications. Therefore, the programmer should

try to reduce the number of far communications. In fact, many Exemplar programmers

have problems scaling their applications beyond 8 processors due to this high far communi-

cation cost.

• In [12], Abandah and Davidson approximate the synchronization time required for syn-

chronizing p processors with a barrier synchronization by:

Tsync(p) = 7.1 p2 microseconds, for p≠8, (EQ 1)

and they pointed out that the implementation of the barrier is particularly inefficient for 8

processors, which requires at least 3 times longer (> 1500µs) than synchronizing 9 or 10

processors. This characterization not only models the performance of barrier synchroniza-

tion, but also reveals a weakness in the machine that may seriously affect an application’s

performance.

2.2 Machine-Application Interactions

In this section, we categorize common machine-application interactions, discuss how

these interactions affect the application performance, speculate as to the performance prob-

lems that they may cause, and point out previous work and future directions for solving these

problems.

2.2.1 Processor Performance

Here, we consider the performance of individual processor subsystems with private caches

and/or private memory. Low processor performance is often the most serious performance

problem even for parallel codes on parallel systems. Yet this problem is surprisingly often

ignored by machine designers and users of parallel systems. Processor performance is most

critical to those applications whose performance scales poorly with the number of processors.

It is also important for efficient use of machine resources and for approaching potentially

deliverable performance even when performance gains can be made by increasing the number

of processors.

30

The current trend in processor design is to discover and exploit more of the instruction-

level parallelism (ILP) in the application. With multiple pipelines, today’s high performance

processors can exploit a high degree of ILP (6-8 instructions per cycle as of 1997) by executing

many instructions simultaneously. To fully exploit the performance capability of these proces-

sors, it is necessary to:

1. Provide sufficient bandwidth and low latency for instruction and data supply: The perfor-

mance of the memory system is important for supplying enough instruction and data sup-

ply bandwidth. Memory systems are organized in a hierarchical fashion with faster, but

costlier caches placed between the processor and main memory to reduce average latency

and control cost, by exploiting data locality. Even relatively few cache misses can seri-

ously degrade the performance of a highly concurrent processor.

As we mentioned in Section 2.1, a processor cache miss on HP/Convex SPP-1000 requires

a latency of more than 50 instruction cycles, and about 200 cycles if the requested data

resides in a remote hypernode memory (see Table 2-1). Efficient utilization of caches is

thus a key issue for developing applications on this machine. In fact, the performance of

CRASH suffers seriously due to cache misses. In each phase, CRASH iterates through

every element in its finite-element mesh. When the working set is greater than the capac-

ity of the processor cache, the processor cache has to reload the working set for every iter-

ation. With 32-byte cache lines, the miss ratio is at least 0.25 while loading 8-byte double

precision floating-point numbers. Utilization of instruction cache can also be a problem for

large application codes.

2. Expose sufficient instruction-level parallelism in the applications: Ideally, the compiler

and/or the scheduler in the processor should exploit the parallelism in the instruction

stream. In practice, they often fail to do so, even when there is abundant ILP in the appli-

cation. In contrast with runtime hardware schedulers, compilers should be able to per-

form more sophisticated and thorough source-code analysis for exploiting ILP, but they

are weak when memory references and program flow are ambiguous. Although runtime

schedulers operate after some of this ambiguity has been resolved, they cannot find the

parallelism between distant instructions.

Compilers may have difficulty exposing the ILP in CRASH, due to the ambiguity in indi-

rect array references. Fortunately, this is a minor problem as far as the overall perfor-

mance is concerned, because most of the runtime is spent in the subroutines whose

memory references are not ambiguous.

31

3. Optimize the instruction schedules: Given adequate ILP and instruction/data supply, a

processor approaches its peak performance by maintaining a sufficient number of inde-

pendent instructions in flight within each critical functional unit. For real applications, in

light of limited ILP and imperfect instruction/data supply, optimizing the instruction

schedules can be very difficult. First, the complexity of finding an optimal schedule grows

quickly as the number of instructions that are considered for scheduling increases. Sec-

ond, accurate information regarding the code’s cache behavior, data dependencies, and

control flow are needed for optimizing the schedule, which is an area in which perfor-

mance tools can help.

For a large application code, it is helpful to identify the code portions that deserve more

elaborate effort from the compiler. The code schedule can be characterized for this pur-

pose, and then fed back for recompilation. Without proper tools, it is extremely difficult to

characterize the schedule.

A failure in any of the above three categories can easily degrade the processor perfor-

mance. Observing the application’s behavior in terms of the performance impact of cache

misses, degree of ILP, and inefficient scheduling will help to pinpoint these processor perfor-

mance problems.

Various well established optimizing compiler techniques for uniprocessors can help opti-

mize the processor performance. For example, loop unrolling, software pipelining, and trace

scheduling can be used to expose ILP [64][31], data prefetching can be used to hide memory

access latencies [52][65], loop blocking can be used to reduce cache capacity misses [66][67],

and data layout methods can be used for reducing conflict misses [45]. Performance informa-

tion is useful for clarifying the ambiguity of data and control flow, and is widely used in the

areas of hand-tuning of programs [68], trace scheduling [31], superblock scheduling [32], data

preloading [69], branch prediction [70] and improving instruction cache performance [32].

Hierarchical machine-application performance bounds models have been developed that also

exploit performance information to analyze the performance of scientific codes and suggest

where, in what respect, and how much improvement may be possible [44][45][46][47][48][49].

This performance bounds methodology is further developed in Chapter 4.

32

2.2.2 Interprocessor Communications

Communications between processors need to be performed efficiently, in the light of

latency and bandwidth limitations. Communications impact the performance of a parallel pro-

gram as the execution is delayed due to communication latency and/or network contention.

Proper organization of communications is important to reduce the communication latency,

enhance overlap, and keep the required bandwidth well below the bandwidth limitations of

the system.

Communications are explicitly specified by the programmers in message-passing codes.

Organizing the communication patterns properly is often a challenge for the programer. Poor

communication performance can result from:

1. Improper scheduling of communications can result in an uneven distribution of communi-

cations which can cause network contention and waste bandwidth; communications may

be serialized in some parts of the network due to contention, while bandwidth in the other

parts may be wasted. Accurately scheduling the communication tasks in the code requires

information regarding the execution time of computation and communication tasks.

2. Improper domain decomposition can cause excess communications. To select a better

domain decomposition algorithm, the domain’s geometrical properties and data dependen-

cies among the elements should be well-analyzed, which is usually a difficult process since

it requires knowledge of the application as well as the available domain decomposition

algorithms.

Shared-memory programming helps relieve the programmers of having to explicitly spec-

ify communications in their codes. However, the actual communication patterns are then only

implicit and hence more difficult to identify and analyze. Although application developers like

to view the shared memory as a unified centralized memory where multiple processors can

access any memory location with some fixed latency (as in the Parallel Random Access

Machine, PRAM, model [71]), in scalable shared-memory machines (KSR1, HP/Convex Exem-

plar, Cray T3D, SGI Origin, etc.), the shared memory is distributed over the system and the

communication latency can be highly unpredictable. As a result, shared-memory program-

mers or compilers need to expose the hidden communication patterns in order to solve perfor-

mance problems due to memory access latency.

33

The use of coherent caches complicates the analysis of communication patterns for a

shared-memory application. The cache coherence protocol tends to move or replicate data to

caches near the processors that have recently requested the data. This is done automatically

by hardware on the HP/Convex Exemplar, the KSR1, and many other modern DSM machines.

Sometimes, the presence of caches degrades the application performance by causing superflu-

ous communication traffic due to false-sharing and unnecessary coherence operations (further

discussed in Section 3.3). To address such problems, we would like to characterize and control

the data movement and the resulting coherence operations (invalidates, updates, etc.), collec-

tively referred to as memory traffic, in the application. However, exposing the memory traffic

for CRASH-like irregular applications with source code analysis is very difficult.

Better decomposition of the problem domain is a key to reducing communication traffic,

and this has been a consideration in most domain decomposition packages. The cache coher-

ence protocol can have a strong impact on the performance of a distributed-cache shared-mem-

ory system [72][73][74][75]. Choosing an appropriate cache coherence protocol is an important

issue in machine design, but has not yet become a fine-tuning option that end users can vary

statically for particular data structures or dynamically in time within their particular appli-

cations. In addition, prefetching/pre-updating techniques have been developed for hiding

communication latencies in shared-memory codes [52]. Asynchronous (nonblocking) communi-

cations can be used for overlapping communication and computation in message-passing

codes. Array grouping can change the data layout to improve the efficiency of communications

by reducing superfluous information within communication transactions and the false shar-

ing that it can cause [45]. The communication patterns in message-passing applications can

be traced by instrumentation/visualization tools such as PICL/Paragraph [76][77], AIMS [78]

and CXtrace [79]. However, exposing communication patterns in sufficient detail for tuning

shared-memory applications is relatively time consuming and was not available before this

dissertation work, which is further addressed in Section 2.4.

2.2.3 Load Balancing, Scheduling, and Synchronization

Even with abundant exposed parallelism, the degree of parallelism achieved in an execu-

tion may be limited by the load imbalance and scheduling constraints in the execution. The

performance of a parallel region is limited by the processor with the most work, and the

34

degree of parallelism achieved is reduced if some processors are idle waiting for the slowest

processor. Scheduling constraints often force some processors to be idle, waiting for the

arrival of schedulable tasks.

Load imbalance affects the degree of parallelism (i.e. efficiency) achieved in a parallel exe-

cution. The performance of a parallel region is limited by the processor with the most work;

the degree of parallelism is imperfect if some processors are idle waiting for the slowest pro-

cessor. The metric

Load Imbalance = (Tmax-Tavg)/Tavg (EQ 2)

is often used to describe the load balance of a parallel region, where Tmax is the execution time

for the processor with the most work and Tavg is the average execution time. An application

using p processors will have an imbalance of 0 when it is perfectly load balanced or an imbal-

ance of p-1 when all the work is performed by one processor. The degree of parallelism is

defined as

Degree of Parallelism = p*Tavg/Tmax = p/(1+imbalance), (EQ 3)

ranging from 1 (total serial) to p (fully parallel).

Synchronization/scheduling overhead reduces the efficiency of a parallel execution. Syn-

chronization overhead includes the latency for performing the synchronization operations

(synchronization costs) and the idle time that processors spend waiting at the synchronization

points (synchronization idle time). Scheduling overhead includes the latency for scheduling

tasks onto processors (scheduling costs) and the idle time that processors spend waiting for

their tasks to become ready for scheduling (scheduling idle time). For loop-based applications,

a large load imbalance often results in long synchronization idle time, due to the need to syn-

chronize with the most heavily loaded processor. Inefficient scheduling can cause unnecessary

scheduling idle time due to unnecessary blocking of tasks.

Scheduling constraints are imposed by the application to ensure correct execution, usually

enforced by various forms of synchronizations. Scheduling constraints enforce a proper order-

ing of memory references and instruction executions to satisfy the data and control depen-

dence in the code. Some synchronization operations are required for correct execution, but

some forms of synchronization, such as barriers, often impose excessive scheduling con-

35

straints, which result in extra synchronization overhead. The parallelization in CRASH-SP

(Figure 1-4) implicitly employs barriers to isolate two individual phases, which illustrates

such a case. For multiple-phase applications like CRASH, if the load is distributed differently

for different phases, finding a decomposition that balances the load individually for each of

the multiple phases is more difficult to determine.

Some schemes, such as fuzzy barriers, have been proposed to relax barrier synchroniza-

tions by scheduling unrelated ready tasks whenever a wait occurs [80][81]. Point-to-point syn-

chronizations reduce synchronization wait time by minimizing scheduling constraints. Long

idle times are often due to load imbalance, in which case domain decomposition techniques

can be used to better balance the load by adjusting the sizes of the sub-problems handled by

individual processors. Static balancing techniques are most efficient for problems whose load

distribution does not change during the runtime. Dynamic balancing techniques that monitor

and periodically rebalance the load as the run progresses can be used effectively within pro-

grams that exhibit dynamic load behavior. For better load balance, an accurate performance

assessment of the load distribution is needed [30]. Multiple phase load balance problems,

where multiple parallel regions are divided by synchronization operations in a program, are

more difficult to solve; the load must be balanced in each such region by either a static multi-

objective decomposition [2] or by dynamically rebalancing as each new and different phase is

entered.

Measuring load imbalance is discussed in Section 2.3. Load balancing techniques are fur-

ther discussed in Sections 3.5-3.8.

2.2.4 Performance Problems in CRASH-SP

Here we summarize the performance problems related to running CRASH-SP on the HP/

Convex SPP-1000/1600, based on the previous discussions:

1. Parallelizing this program by partitioning the loop indices (i) normally results in poor

load balance and excessive communication overhead. A graph-partition algorithm is

required to decompose the unstructured finite-element meshes.

36

2. The communication pattern needs to be explicitly specified for a message-passing version,

yet determining the pattern is not a trivial task. While a shared-memory version does not

require an explicit communication pattern, analyzing its communication overhead is more

difficult.

3. In order to balance the load among the components of a partition, performance assess-

ment is needed to extract the load associated with individual elements of various types in

the finite mesh, for each of the phases in the application code.

4. Orchestrating the code in two phases, which appears to have no impact on serial perfor-

mance, can significantly degrade parallel performance, e.g. by doubling the number of

cache capacity misses if the data working set is much larger than the cache size. Note that

the 1MB processor cache on HP PA-RISC7100, although quite large as a first level cache,

is relatively small, compared to the desired data set size of many parallel codes, such as

CRASH and NPB[62].

5. Loop fusion cannot be applied to help combine the workload or reduce capacity misses for

this example, because execution of one phase cannot start until the other is completely

executed. As shown in Figure 2-2, array Velocity is read in the Contact phase and writ-

ten in the Update phase, which creates Write-After-Read (WAR) and Read-After-Write

Contact Phase

Update phase

Contact Phase

Read Velocity(Neighbor(j,i))

Write Velocity(i)

Read Velocity(Neighbor(j,i))

Time

Write-after-Read (WAR)

Read-after-Write (RAW)

Dependency

Dependency

Figure 2-2: Dependencies between Contact and Update

barrier

barrier

37

(RAW) dependencies between these two phases. Since Velocity is referenced indirectly

in the Contact phase, it is difficult to determine when an arbitrary array element, e.g.

Velocity(k), is no longer referenced in the Contact phase. Therefore, some sort of mech-

anism, such as a synchronization barrier, is used to conservatively enforce all these poten-

tial data dependencies.

6. Since the Contact phase and the Update phase cannot be fused, they are orchestrated in

the code as two phases. It is generally difficult to balance two program phases with one

static domain decomposition, because their load distributions can be different; however,

use of two different domain decompositions can result in excessive communication

between phases.

7. As the program’s iterations proceed, the load distribution may vary considerably as con-

tacts occur (and cease) during the runtime. Dynamic load balancing techniques should be

considered in this case.

2.2.5 Overall Performance

The performance problems in CRASH are interrelated, it is almost impossible to solve one

problem without affecting the other problems. A complete performance tuning scheme should

consider them jointly, so as to optimize the overall performance, which makes optimization of

parallel applications complex. For example, changing domain decomposition affects both com-

munication traffic and load balance in the application. To efficiently optimize the overall per-

formance, a complete and global performance assessment is often necessary for identifying

performance problems and orchestrating performance tuning actions.

In the next section, we discuss various performance assessment techniques for character-

izing a wide range of performance problems as well as for exposing detailed machine-applica-

tion interactions. In Chapter 3, we optimize the overall performance by carefully

characterizing the interrelationship among major performance problems and suggest a logi-

cally-ordered sequence of performance tuning steps. In Chapter 4 and Chapter 5, we use high-

level performance assessment and program abstraction respectively to reduce the complexity

of optimizing the overall performance.

38

2.3 Performance Assessment Techniques

In this section, we discuss performance assessment techniques for characterizing the per-

formance problems as well as exposing machine-application interactions. Performance assess-

ment techniques are categorized into three basic types: source code analysis, profile-driven

analysis, and trace-driven analysis. We discuss how these different types of tools can be

applied to characterize different performance problems.

2.3.1 Source Code Analysis

Source code analysis, including the use of compilers, is useful for extracting an applica-

tion’s high-level semantics that may be lost after compilation. Most parallelizing compilers

perform limited data and control dependency analysis to parallelize the code and attempt to

optimize its performance. Some attempt to optimize without such knowledge simply by trying

a series of cut-and-try options, which is usually very tedious and achieves only mixed results.

Users often need to assess the code performance independently in order to decide how to set

the many compiler switches appropriately for good optimization. Even when the requisite

knowledge is obtained, the compiler switches are often defined at too coarse a granularity for

effective control of the process.

Besides conventional compilers, pre-compilers (a.k.a. pre-processors or source-to-source

translators), such as Parafrase-2 [23] and APR Forge [34], specialize in data and/or control

flow analysis and are designed primarily to assist manual parallelization by exposing the

results of their analysis to the users. Some of them even interact with the users by providing a

visualization the results and accepting user commands using graphical user interfaces.

Nevertheless, difficulties in analyzing indirect references and procedure calls often limit a

source code analyzer’s ability to pursue global analysis of the application. Global events, such

as shared-memory accesses, communications, and synchronizations, often interact with the

application beyond the scope of the loops, the procedures, or even the processors where they

reside. As a result, current source code analyzers are fairly ineffective in providing vital per-

formance assessment for irregular parallel applications.

39

An experienced programmer can, with sufficient effort, carry out a source code analysis

quite effectively, as is done in practice by hand-tuning today. People, especially the code

authors, seem to be able (with practice) to learn how to envision their high-level codes and

data structures relatively well in cases where most compilers fail. For example, it should

quite easy for a programmer to examine the procedure Contact_force(Position(i),

Velocity(i)) in our simple CRASH example and verify whether there might be any side-

effects within the procedure, such as when referencing variables other than Position(i)

and Velocity(i).

Our performance tuning experience in the Parallel Performance Project shows that the

knowledge, insights, and statements of purpose from a code’s author are extremely useful

when carrying out source code analysis. It is doubtful that this sort of human art can be elim-

inated from performance tuning at any time in the near future. We believe, however, that

such human effort should be further assisted, utilized, and integrated into the application

development environment. In Chapter 5, we show how our performance modeling methodol-

ogy addresses such issues.

2.3.2 Profile-Driven Analysis

A profiling tool, or profiler, counts the occurrence of specific performance-related events in

the application. These counts, also known as performance metrics, provide a quantitative

characterization of certain aspects of the application performance as well as a description of

application behavior which might be useful for analyzing the application. For example, the

cache miss ratio generally characterizes the utilization (efficiency) of a cache. Communication

latency is essential to characterization of the communication performance. The runtime dis-

tribution over the processors in each program region is a good indication of load balance. The

control flow profile provides the user with the execution counts for loops and subroutines.

Hardware-only profiling was intended for evaluating the machine performance by moni-

toring the machine operation at the system component level [82]. A hardware-only approach,

however, is improper for application development since it is not controllable by software, nor

can the profiles be associated with the application in a way that exposes machine-application

interactions. Software-only profilers, such as gprof [68] and QPT [83], are capable of collecting

the control flow and the execution time profile at some coarse resolution by a user-defined

40

instrumentation of the application. While such software-only profilers are relatively machine-

independent, they are of limited use because (1) the code instrumentation may be intrusive to

the application performance, (2) some important, but detailed machine operations, such as

cache misses, operation system activities, and library routines, generally cannot be profiled,

and (3) the profiling process is usually time-consuming, since the profile data are collected by

software via interrupting the execution of the target application.

It has become a trend in processor design to support hardware performance monitoring

(event counters), such as KSR’s PMON [84] and HP/Convex’s CXpa [35]. Using the hardware

performance monitors, profiling software can selectively probe some detailed machine opera-

tions with less intrusiveness to the application, yet still provide a user-controllable profiling

process and expose machine-application interactions. Such hybrid approaches tend to provide

the most accurate, detailed, and efficient profiling process today.

Profiling is an important skill to master for characterizing application performance.

Recent profilers, such as CXpa, are quite useful and user-friendly for this purpose. In this sec-

tion, we illustrate the role of profilers in application development with CXpa as a case study.

After this case study, we discuss the weaknesses and the desired features of profiling tools.

2.3.2.1 The Convex Performance Analyzer (CXpa)

The Convex Performance Analyzer (CXpa) is a HP/Convex software product for profiling

application performance on HP/Convex Exemplar machines. CXpa is capable of profiling per-

formance for selected routines and loops of a shared-memory or message-passing program

written in C or Fortran. Thanks to the performance monitoring hardware embedded in the

HP PA-RISC 7100/7200 processors, CXpa gives accurate profiles with very low interference to

the regular execution. Detailed user references about CXpa can be found in [35].

Performance Metrics for the Application

Use of CXpa basically consists of three major stages: instrumentation, profile collection,

and profile visualization/report. First, using a compiler directive, -cxpa, the users can

instruct the compiler to instrument their programs. Then, execution of a CXpa-instrumented

program generates a performance profile (*.pdf). Finally, the users can review the profile

41

with a utility called cxpa. Advanced users can use the cxpa utility to select the performance

metrics and the portions of the code that need to be profiled.

CXpa can instrument the following program regions: (1) routines, (2) loops, (3) parallel

loops, and (4) basic blocks. Profiling basic blocks is incompatible with profiling the other pro-

gram structures in the same run. Loops that are automatically parallelized by the compiler or

parallelized by the programmer using compiler directives are parallel regions that are recog-

nized by CXpa, while other parallel regions that are formed by direct use of the parallel

libraries (the CPSLib) may or may not be recognized by CXpa. For users who are interested in

profiling library routines, pre-instrumented libraries are available and should be linked at

compile-time.

For the HP/Convex Exemplar SPP-1600, CXpa provides the performance metrics listed in

Table 2-5 for each user-selected program region (loop or routine). Performance assessment

can be performed by identifying the most time-consuming program regions or other individual

regions. Note that local memory accesses are the memory accesses for data not found in the

processor cache that was found in local memory (the portion of memory allocated to that pro-

cessor’s hypernode), and remote memory accesses are the memory accesses for data not found

in the processor cache that was found in a remote memory (memory in some other hypernode).

Also note that while various memory access events can be profiled by CXpa, only one type of

on-processor events and one type of off-processor events can be chosen for CXpa to profile

within a run.

CXpa includes a performance visualizer that provides three different views for a profile:

(1) text report, (2) 2-dimensional visualization, and (3) 3-dimensional visualization. Examples

of the 2-D and 3-D views are shown in Figure 2-4. Below we discuss how the performance met-

rics collected by CXpa can be used to analyze the machine-application interactions in the tar-

get application.

Assessing the Processor Performance

The overall processor performance is indicated by the average instructions per clock cycle

(IPC) or average million instructions per second (MIPS), calculated by

42

IPC = (Number of instructions) / (Execution time in cycles) , (EQ 4)

or

MIPS = (Number of instructions) / (Execution time in microseconds) , (EQ 5)

where the number of instructions is obtained by configuring the on-processor counters to mea-

sure the executed instructions. A larger IPC (MIPS) indicates higher processor performance,

where the maximum achievable IPC (MIPS) is 2 (240) on each 120MHz HP PA-RISC 7200

processor in the SPP-1600. Low IPC indicates inefficient processor utilization.

Wall Clock Time
The wall clock time measures the time duration from the begin-

ning to the end of workload in a profiled program region.

CPU Time

The CPU time measures the execution time that each processor

spends in performing computation and/or memory access (not

including the time the processor spends in the OS routines or out-

side the profiled program).

Dynamic Call Graph

CXpa profiles the count and time for every caller-callee (a.k.a.

parent-child) pair to generate a call graph or report. A call graph

helps the user understand the distribution of runtime and pin-

point time-consuming program regions.

Execution Counts The number of times that a profiled program region is executed.

On-Processor Event
Counts and Latency

The number and latency of specific on-processor memory access

events, which can be one of the following four categories: (1) exe-

cuted instructions, (2) instruction cache misses, (3) data access

count and cache misses, or (4) instruction and data TLB (transla-

tion lookaside buffer) misses.

Off-Processor Mem-
ory Access Event
Counts and Latency

The number and latency of specific off-processor memory access

events, which can be one of the following three categories: (1) local

memory accesses, (2) remote memory access, or (3) both local and

remote memory accesses. For each category, CXpa can be config-

ured to profile: (1) read accesses, (2) write accesses, or (3) both

read and write accesses.

Table 2-5: Collectable Performance Metrics with CXpa, for SPP-1600

43

The on-processor counters can also be configured to monitor instruction or data cache

misses. A large cache miss ratio and/or long cache miss latency indicates inefficiency in cach-

ing. The cache miss ratio for CRASH-SP reveals one problem that we mentioned in Section

2.2.4 for the large vehicle model (see Table 1-1) whose data working set is larger than the pro-

cessor data cache (1MB). In this case, the miss ratio of the processor data cache is relatively

high. Increasing the number of processors from 1 to 8 does not reduce the number of cache

0 10 20 30 40 50

0 10 20 30 40 50

CPU (secs)

comm3

setup

bubble

norm2u3

norm2u3p

zero3p

vranl

rprj3p

comm3p

zran3

interpp

psinvp

residp

mg3pp

start

Routines (plus children)

Figure 2-3: CPU Time of MG, Visualized with CXpa.

(a) Two-Dimensional Visualization

(b) Three-Dimensional Visualization

44

misses, instead, we observe an increase in the average cache miss latency. The increase in the

average cache miss latency is possibly due to the increasing degree of sharing and/or degree of

memory contention. The high miss ratio and high cache miss latency appear to be major rea-

sons that the processors deliver poor IPC, but the CXpa profiles alone do not suffice to deter-

mine the exact causes of the performance problems.

Assessing the Communication Time

The off-processor memory access counters can be configured to acquire one specific type of

communication events in one profiling. The number and latency of local memory accesses

characterize the communications together with the processor cache misses within each hyper-

node. Since cache misses and communications are usually treated differently in performance

tuning, further characterization is necessary to differentiate between the overhead of these

two. When the working data set is much greater than the processor cache, such as for the

large vehicle model running on 1 to 8 processors, the communications are overshadowed by

the cache capacity misses. In fact, the number of local memory accesses (cache misses) in

CRASH-SP increases slightly while increasing from 1 to 8 processors.

The number and latency of remote memory accesses characterize the (long distance) com-

munications among the processors in different hypernodes via the CTI rings. Running

CRASH-SP on 9 or more processors results in a large amount of remote memory accesses,

which indicates that the domain decomposition in CRASH-SP performs poorly. Longer aver-

age local (remote) memory latency per access indicates a higher degree of sharing or conten-

tion in the local (remote) memory system or the interconnection network.

Assessing the I/O and OS Time

For shared-memory parallel programs, memory access includes cache misses and coher-

ence communications. Computation, memory accesses (including communication), I/O and OS

events can be overlapped during the execution, as illustrated in Figure 2-4. The wall clock

time on a processor measures the total elapsed time in these activities whereas the CPU time

excludes the time that the processor spends exclusively in the I/O and OS routines, i.e. the

CPU time is the wall clock time minus the time during which the processor is not performing

45

either computation or memory accesses. Wall clock minus CPU time can be used to character-

ize the overhead due to I/O and other OS events.

CRASH performs I/O sequentially only at the beginning and the end of the simulation.

The I/O time is not a serious problem in CRASH, as it is relatively small compared to the com-

putation time.

Assessing the Load Imbalance

On the HP/Convex SPP, when a parallel loop is executed, multiple threads are spawned

and assigned to the processors. Barriers are mandatory to synchronize the processors at the

beginning and at the end of the parallel loop. Between the barriers, each thread is essentially

the same as the original sequential loop but the loop index values are partitioned among the

processors. As illustrated in Figure 2-5, the wall clock time reported for each processor (e.g.

w1,0, w1,1,...) in the parallel loop is the wall clock time required by that processor to perform

its thread. The wall clock times of parallel loops (W1,W3) measure the time from the beginning

to the end of the parallel loop, including the overhead of barrier synchronizations, i.e.

Wi=Maxp{wi,p} + (Synchronization Cost in the Parallel Loop) (EQ 6)

computation

memory accesses

I/O, OS events, etc.

CPU time

Wall clock time

Figure 2-4: Workload Included in CPU Time and Wall Clock Time.

(cache misses, communications)

} I/O, OS overhead

CPU time

46

Some processors may be idle while waiting for the slowest processor. The amount of work

performed in a parallel loop is indicated by the total wall clock time (busy time) on individual

processors. For example, the total busy time in parallel loop 1 is Σq w1,p = (w1,0 + w1,1 + w1,2 +

w1,3), and the processor utilization (efficiency) in this parallel loop can be characterized by

Efficiency = (total workload)/(total time) = (Σp w1,p)/(4*Maxp{w1,p}) , (EQ 7)

or

Degree of Parallelism = (total workload)/(wall clock time) = (Σp w1,p)/Maxp{w1,p} , (EQ 8)

or

Load Imbalance = (wall clock time - average workload)/(average workload)

= (4 * Maxp{w1,p} - Σp w1,p) / (Σp w1,p) . (EQ 9)

Despite interpreting the performance slightly differently from one another, these metrics pro-

vide essentially the same performance assessment regarding the degree of parallelism

achieved in the parallel loop and can be used interchangeably.

Note that CXpa does not report any of the above metrics, instead, it reports a CPU time/

wall clock time ratio, (Σp ci,p)/Wi , for loop i, where ci,p is the computation time that proces-

sor p spent in the loop. This particular performance metric views both computation and com-

w2,0

busy
idle
barrier

time

w1,3

W1 W3W0 W2

w1,2

w1,0

w1,1

w3,0

w3,1

w3,2

w3,3

Figure 2-5: Wall Clock Time Reported by the CXpa.

proc 0

proc 1

proc 2

proc 3

Wr : Total wall clock time the processors spent on program region r.
wr, p : Total wall clock time that processor p spent in program region r

region 1region 0 region 2 region 3
(parallel loop 1) (parallel loop 2)

47

munication time as useful work only the additional I/O and OS time included in the wall clock

time is viewed as overhead. This metric (CPU time/wall clock time ratio) often yields similar

value for the degree of parallelism of a parallel loop, but significant differences can emerge

when a parallel loop spends a considerable amount of time in OS events or synchronization

operations.

We notice that the load imbalance for CRASH-SP generally increases as the number of

processors increases, which is typical for irregular applications.

2.3.2.2 Limitations of Profile-Driven Analysis

Profiling tools are generally useful in permitting the user to probe various machine-appli-

cation interactions, as we have demonstrated in Section 2.3.2.1. However, the user usually

has to reason carefully about what the performance metrics actually represent in order to

gain realistic insights about the application performance. In addition to counting events, more

sophisticated analysis should be integrated into profiling tools in order to permit their effec-

tive use by inexperienced programmers.

To save hardware cost, some profilers may use the same set of counters for profiling vari-

ous types of events. For example, in a particular run, the HP PA7100/7200 on-processor

counters can be configured to profile one of the four types of memory access events described

in Table 2-5, thus one would need four profile runs in order to acquire the counts of all those

four types of events. This results in an inconvenient and less consistent performance assess-

ment; profiles obtained from different runs may not be consistent, especially for applications

with dynamic behavior.

Profilers do not record performance metrics of different iterations separately; they simply

accumulate the time in each region over all iterations and report the sum. As a result,

dynamic behavior from iteration to iteration cannot be ascertained simply by using a profiler.

However, if a profiler allows the profiled program to turn profiling on and off during runtime,

a user with a great deal of patience could profile part of the execution in each run and capture

some of the dynamic behavior.

Even with hardware support, profiling can be very intrusive to application performance,

particularly when the application is profiled in detail. The accuracy of profiling can also be

48

influenced by other programs in a multitasking environment. Unfortunately, since current

profile-driven analysis tools are far from foolproof, one should be cautious in using profiles

until they are well-validated.

2.3.3 Trace-driven Analysis

Trace-driven analysis allows detailed assessment of the application’s runtime behavior by

performing post-run analysis of the event traces recorded during a run of the application. A

trace contains a sequence of events, such as instructions, memory references, communica-

tions, and synchronizations, which may immediately interest the user, or help to define a

more focused trace-driven simulation to derive a more detailed performance assessment.

Trace-driven analysis has conventionally been used by computer architects for studying

processor performance in earlier design stages (e.g. [85][86][87][88]) and characterizing exist-

ing machines (e.g. [38][89]). In such usages, traces are often collected, sampled, or synthesized

from benchmark programs. The storage and time required for collecting and analyzing traces

are usually costly. For accurately assessing the application performance, trace collection

needs to be less intrusive. Furthermore the functionality and complexity of the analysis need

to be considered when making trade-offs in the design of trace-driven analysis tool. For exam-

ple, a precise cycle-by-cycle simulation that models detailed machine-application interactions

may be too complex to be applied to the entire application. Simplified machine or application

models are often used to reduce the complexity and hence time requirements of trace-driven

analyses, and yet provide useful results.

2.3.3.1 Assessing the Processor Performance

An instruction trace driven processor simulation that models major operations of the pro-

cessor core, i.e. the datapath, yields a first-order approximation for assessing the processor

performance on this application (e.g. [87][88]), as illustrated in Figure 2-6(a), which is useful

for analyzing the instruction schedule, the instruction-level parallelism, or the efficiency of

branch prediction. Traditionally, other factors, such as cache and memory effects on perfor-

mance, are investigated separately to reduce the complexity of the processor simulation.

Behavioral cache simulators, such as Dinero [90], examine the memory reference trace and

49

report the number of references and cache misses in the application, as illustrated in

Figure 2-6(b).

Various schemes, such as out-of-order execution, trace caches (e.g. [91]), prefetching (e.g.

[65]), and multithreading (e.g. [92]), have been employed in recent high-performance proces-

sor designs to reduce the performance impact of cache and memory. Simulating the processor

and/or cache individually may not produce satisfactory results for studying the performance

of these designs. A timing simulation that models the datapath, the cache, and the memory

(e.g. [93][94]), as illustrated in Figure 2-6(c), can provide better accuracy in one unified simu-

lation, yet the complexity and cost of such a simulation is higher than simulating the proces-

sor and the cache individually.

In our Parallel Performance Project, we organize individual simulation modules, K-

LCache (see Section 2.4.4) or CIAT/CDAT [38], mlcache [93], and SimpleScalar [94], in a

hierarchical fashion to reduce the complexity of the simulator, as illustrated in Figure 2-6(d):

1. First, the memory reference trace is examined by a shared memory simulator (K-LCache

or CIAT/CDAT) to expose and flag the shared-memory communications in the trace;

2. Then, the memory reference trace, with exposed communications flagged, is sent to a

cache simulator (mlcache) to expose and flag the cache misses in the trace;

3. Finally, the memory reference trace, with the exposed communications and cache misses

flagged, is used together with the instruction trace to perform a timing simulation of the

processor-memory system using SimpleScalar.

This approach simplifies the implementation in each of these modules, and also allows us to

use a variety of existing cache and memory simulators.

2.3.3.2 Assessing Shared-Memory Communication Performance

For a shared-memory application, we first focus on exposing its communication pattern,

which is the key to detecting and solving performance problems in communications. Simulat-

ing the shared-memory with the memory reference trace is sufficient to expose this communi-

cation pattern. Tools of this kind and performance assessment examples can be found in

[11][38][44]. This topic, as well as our shared-memory simulator, K-LCache, are further dis-

50

instruction trace

runtime
branch prediction efficiency
instruction scheduling efficiency
instruction-level parallelism

Processor
Model

instruction trace

runtime
branch prediction efficiency
instruction scheduling efficiency
instruction-level parallelism

Processor
Model

(a) First order approximation of the processor performance

(c) Simulating the processor, the cache, and the memory system simultaneously

Cache
Model

cache utilization
memory latency

Memory
Model

instruction trace

(d) Simulating the processor, the cache, and the memory system

Shared-Memory

Simulation

memory reference trace

memory reference trace Cache
Model

cache misses

(b) Simulating the cache

Figure 2-6: Examples of Trace-Driven Simulation Schemes.

+ shared memory communications

Cache

Simulation

+ cache misses

Processor
Simulation

runtime
branch prediction efficiency
instruction scheduling efficiency
instruction-level parallelism
cache utilization
memory latency

(SimpleScalar)

(mlcache)

(CIAT/CDAT)

in a hierarchical fashion

51

cussed in Section 2.4. K-LCache provides innovative techniques for categorizing shared-mem-

ory cache misses, and speeds up its simulation by using parallel execution.

After the communication pattern is exposed, we can further analyze the timing of the

communication events by carrying out a processor-cache simulation, as mentioned in Section

2.3.3.1.

2.3.3.3 Assessing Message-Passing Performance

The performance of communication and synchronization in a message-passing application

is explored by examining messages. As opposed to shared-memory applications, messages can

be more conveniently exposed by instrumenting the message-passing library itself, or calls to

the message-passing library. The source, destination, length, type, as well as time-stamps are

commonly attached to each exposed message event that is recorded in the message trace.

While time-stamps are prohibitively costly for instruction or memory reference traces, the

cost of time stamping is small for message traces since the time between messages usually

consists of a great many (normally more than thousands) instructions.

PICL/ParaGraph [76][77], AIMS [78], and CXtrace [79] are representative tools that

employ this approach. In these tools, the runtime is partitioned into the computation (busy)

time between messages, message time (time for transferring/receiving messages), and idle

time (time spent in message routines waiting to communicate/synchronize). The runtime and

the network traffic are analyzed to characterize the load imbalance (degree of parallelism)

and the communication performance of the application.

2.3.4 Other Approaches

An approach similar to trace-driven analysis, execution-driven simulation, such as Pro-

teus [95], Tango/Tango-lite [96][97], or Sim-OS [98], extracts the behavior of an application by

running its executable code on a simulating machine with instrumentations that emulate the

machine-application interactions between the application and a target machine. This

approach allows one to analyze the application performance with an existing or hypothetical

machine model. It also saves the space and time required for storing and retrieving traces.

However, the implementation of execution-driven simulation is more complicated and error-

52

prone, thus, execution-driven simulation has not been a popular tool for application develop-

ment.

Mixing profiling and tracing, hybrid approaches (such as IBM’s Performance Visualizer

(PV) [36]) monitor and trace selected machine-application events (e.g. messages) and perfor-

mance metrics (e.g. number of cache misses). With the hardware performance monitors inte-

grated into the RS/6000 POWER2 processor, PV can visualize selected runtime events and

various performance metrics for the user in real-time during an application run. These visual-

ized events and metrics can also be recorded in a trace and played back for post-execution

analyses.

2.4 Efficient Trace-Driven Techniques for Assessing the
Communication Performance of Shared-Memory
Applications

In this section, we present techniques for accelerating the analysis of communication pat-

terns. The tools that we developed for the KSR may have become obsolete, but most of the

techniques used in these tools are applicable to newer machines. We summarize the KSR1/2

Cache-Only Memory Architecture (COMA) in Section 2.4.1. The communication patterns in

this COMA machine are more subtle and less predictable than for most Uniform Memory

Access (UMA) or the Non-Uniform Memory Access (NUMA) machines that prevail today.

In Section 2.4.2, we categorize and identify communications in a distributed cache system.

In Section 2.4.3 and Section 2.4.4, we present the techniques and tools that employ trace col-

lection and trace-driven simulation to expose the implicit communications that occurs in a

parallel execution. Analysis of the communication patterns in the codes are important for

reducing the communication overhead. Section 2.4.5 shows a case study how the tools can be

used for analyzing the communication patterns.

2.4.1 Overview of the KSR1/2 Cache-Only Memory Architecture

The Kendall Square Research KSR1 was the first commercially available shared-memory

parallel system to employ a COMA design. The memory system of the KSR1/21, also known as

1. The KSR1 and its successor KSR2 shared the same memory system design.

53

ALLCACHE, was conceived to be a group of ALLCACHE engines, connected in a fat tree hier-

archy of rings, as shown in Figure 2-7. In practice, up to 34 rings could be connected by a sin-

gle second-level ring for a maximum configuration of 1088 processors. Each single ring

consists of up to 32 processor cells and up to two ALLCACHE directories. The ALLCACHE

memory system provides programmers with a uniform 64-bit address space for instructions

and data, which is called the System Virtual Address space (SVA).

The contents of SVA locations are physically distributed among the caches situated in the

single-processor cells. An ALLCACHE Engine 0 is associated with each lower level ring and is

physically comprised of a set of local caches, each capable of storing 32 MB. There is one local

cache for each processor in the system. Hardware cache management mechanisms cause the

page containing a referenced SVA address to be allocated, and to contain a valid copy of the

referenced subpage, in the local cache of the referencing processor. That subpage remains in

that local cache until the page is replaced or the subpage is marked invalid by some other pro-

cessor.

... ...

ALLCACHE
Directory

ALLCACHE
Directory

ALLCACHE Engine: 1

ALLCACHE Engine: 0

Local
Cache
Directory

Local
Cache

Processor

Local
Cache
Directory

Local
Cache

Processor

ALLCACHE
Group:0
(AG:0)

ALLCACHE Group: 1 (AG:1)

Figure 2-7: KSR1/2 ALLCache.

...

54

Data items are dynamically moved and replicated, updated and invalidated, among the

local caches based on the reference patterns in the parallel program. The programmer does

not have to explicitly control the placement of data in the system. Besides specifying parallel-

ism, the programmer’s only concern is the work distribution and scheduling which implicitly

controls the location of data and hence the traffic on the network. However, COMA systems

require a run time mechanism to search for copies of valid cache lines in the system and man-

age them properly with a complex cache coherence protocol, which adds runtime overhead.

Nevertheless, the KSR1, as opposed to traditional supercomputers, offered scalable perfor-

mance, a competitive price, a familiar UNIX (OSF/1) operating system, an easy-to-use shared-

memory programming model, and a parallelizing Fortran compiler. Upon its introduction in

1991, the KSR1 became popular as a low-cost supercomputer.

Each KSR1 node contains a 64-bit custom VLIW RISC processor with a 20 MHz clock. The

processor allows a two-instruction issue per clock cycle: one address calculation, branch, or

memory instruction and one integer or floating-point calculation instruction. The instruction

scheduling on the KSR1 is done purely by the compiler, including nop (no operation) instruc-

tions placed for hazard-protection since there is no hardware interlocking mechanism on the

pipelines. Cache misses generate exceptions that invoke system routines (firmware) to per-

form the cache coherence protocol and memory accesses. Floating-point multiply-add triad

instructions allow a peak performance rating of 40 MFLOPS. However, as microprocessor per-

formance continued to evolve rapidly in the early 90’s, the custom-designed processors of the

KSR1 quickly fell far behind high performance commodity microprocessors, such as the IBM

RS6000, HP PA-RISC and DEC Alpha. Due to the inability to provide new generation custom

processors in time, the KSR2, which incorporated processors twice fast (40 MHz) as the KSR1,

was not released until 1994, and its single processor performance was quite far behind many

of its competitors at that time. Mediocre single processor performance, combined with finan-

cial problems caused KSR to go bankrupt in 1995.

A 32-processor KSR1 system was the first parallel machine installed at the CPC of the

University of Michigan in 1991. A 64-processor KSR2 system was later installed at the CPC in

1993. References [84][99] provide detailed descriptions of the KSR1. Performance evaluations

of the KSR1 can be found in [44][84][41][52].

55

2.4.2 Categorizing Cache Misses in
Distributed Shared-Memory Systems

In UMA machines, there is no need to distinguish communications from memory accesses

since they have the same latency. In NUMA machines without caches, communications are

said to occur when processors access remote memory locations. The remote memory accesses

can usually be identified by their addresses. However, in a distributed cache shared-memory

or cache-only machine, such as the KSR1/2, the data movement in the system is hidden from

the user because the cache system moves data among the caches automatically.

In the KSR1/2, each subpage that is cached in a local cache has an associated state. As

viewed by the requesting processor, a memory access is a hit if the subpage that holds the

requested data is cached in the local cache of the requesting processor and the state of the

subpage satisfies the type of the memory access; otherwise, it results in a local cache miss

that requires copy, invalidation, or update of the requested subpage from/to remote caches

[84].

There are several types of local cache misses. Besides compulsory, capacity, and conflict

misses that occur in single caches, coherence misses are references to subpages that are not in

whose state in the local cache is not appropriate for that reference, according to the cache

coherence protocol. In a parallel execution, these misses are intermixed and difficult to iden-

tify during runtime. Thus, we developed a post-execution methodology to categorize cache

misses in a distributed cache system by extending Sugumar’s OPT methodology [100]. This

new cache miss categorization system, called D-OPT model, includes a hierarchy of compul-

sory, coherence, capacity, mapping, and replacement misses, as defined below: (Note that a

cache line in this definition is equivalent to a subpage in the KSR1/2).

Definition 1. Categories of Misses in Distributed-Cache Systems (D-OPT Model):

Given a target distributed-cache system, where each individual cache has size C, associativity

A, line size L, and replacement policy R, the cache misses generated in an application are cat-

egorized as:

• Compulsory miss: the misses that would still occur for a unified cache of infinite size. A

compulsory miss occurs when the program accesses a cache line for the first time.

56

• Coherence miss: the additional misses that would occur for a distributed cache system

where each individual cache is of infinite size. The number of coherence misses is the total

number of misses in this system minus the compulsory misses above.

• Capacity miss: the additional misses that would occur for a distributed cache system where

each individual cache has size C, full associativity, and an optimal replacement policy, i.e.

all misses in this system minus the compulsory and coherence misses above.

• Mapping miss: the additional misses that would occur for a distributed cache system where

each individual cache has size C, associativity A, and optimal replacement policy, i.e. all

misses in this system minus the compulsory, coherence, and capacity misses above.

• Replacement miss: the additional misses that occur for the actual distributed cache system,

where each individual cache has size C, associativity A, and replacement policy R, i.e. all

misses minus all the above types of misses.

Given a memory access pattern, let Misses(l, c, a, r, d) represent the cache miss pattern in a

cache where l, c, a, r, and d are the line size, cache size, associativity, replacement policy, and

distribution (unified or distributed) of that cache. Table 2-6 shows the characterization of the

cache misses in the target distributed cache system. In this table, note that full-associativity

is represented as C/L, opt replacement indicates an optimal replacement policy with bypass

[100], and a replacement policy is not necessary (indicated as -) for a cache of infinite size.

The D-OPT model represents a hierarchical view of the target cache system. From com-

pulsory misses to replacement misses, each cache miss category characterizes a level of hier-

archy with respect to idealization of the cache system from a perfect, but not preloaded,

Cache Miss
Category

Cache Misses in the Category

Compulsory Misses(L, ∞, ∞, - , unified)

Coherence Misses(L, ∞, ∞, - , distributed) - Misses(L, ∞, ∞, - , unified)

Capacity Misses(L, C, C/L, opt, distributed) - Misses(L, ∞, ∞, - , distributed)

Mapping Misses(L, C, A, opt, distributed) - Misses(L, C, C/L, opt, distributed)

Replacement Misses(L, C, A, R, distributed) - Misses(L, C, A, opt, distributed)

Table 2-6: D-OPT Model for characterizing a Distributed Cache System.

57

system (most idealized view), then successively adding individual caches, finite capacity, asso-

ciativity, and the actual replacement policy (most detailed view).

The D-OPT model is not suitable for categorizing cache misses in real time, because it

requires evaluations of multiple cache configurations and an optimal replacement policy, but

it can be carried out by using trace-driven simulation. We have developed tools to extract the

coherence misses in an application by simulating an infinite-size distributed-cache system

and an infinite-size unified cache system given an the application’s memory reference trace.

Such a simulation is much faster than conventional cache simulation schemes, yet it is suffi-

cient to provide the coherence misses that are inherent to a given parallel application, as cate-

gorized in our D-OPT model. Once compulsory and coherence misses are identified and

marked in the trace, the capacity, mapping, and replacement misses of each individual cache

can be extracted by simulating each cache individually.

2.4.3 Trace Generation: K-Trace

K-Trace is a tracing tool for the KSR1/2 parallel computer; it modifies an assembly pro-

gram by inserting tracing instructions so that the program can automatically generate a

memory reference trace during the run-time. K-Trace has successfully generated traces for

our performance studies on the KSR1 at the University of Michigan.

Simulation is an important technique in hardware and software studies, providing mea-

surements to evaluate the performance of computer systems [85][86][89]. In studies of the

KSR1, the traces generated by K-Trace can be used by trace-driven simulators to simulate

processor caches, local caches, and communication traffic. Thus, K-Trace enables detailed

studies of program behavior, compiler optimizations, and the architecture of the KSR1, in a

way that is helpful for tuning the performance of practical applications.

K-Trace is based on in-line tracing, a method that has been broadly used in other tracing

and performance tools [101][83]. However, it is not straightforward to port tracing tools from

other platforms to the KSR1 because of some unique hardware and software features of the

KSR1. Some difficulties we encountered in developing K-Trace are machine-specific problems

which require detailed or undocumented information about the KSR1. For example, assembly

language programming was essential to developing K-Trace, but was not supported by KSR.

58

2.4.3.1 The Design of K-Trace

In-Line Tracing

K-Trace employs in-line tracing techniques which consist of the following two phases:

• Instrumentation: K-Trace reads the assembly version of a source program and produces a

modified source to be executed. The instrumentation includes the insertion of tracing code

and transformations of conditional branch instructions. Figure 2-8 shows an example

inline code. The instrumentation of a file is relatively fast, taking less time than compiling

the source program. The K-Trace preprocessor is written in a mixture of C and lex, a com-

piler generating tool under Unix

• Trace Generation: The modified program is then linked with K-Trace run-time routines

and executed. The execution produces a trace that includes the addresses, instruction ID’s

and processor ID’s that identify memory references. The synchronization points in the pro-

gram are also marked in the trace. Figure 2-9 shows an example trace.

Since K-Trace directly modifies assembly programs without any information from compil-

ers, it is independent of compilers and can be used to trace C, Fortran and assembly programs

on the KSR1/2. The instructions inserted during instrumentation do not affect the state of the

processors in the trace generation phase. The state of a processor is composed of registers and

condition codes. The results of an instrumented program should remain the same as the origi-

nal program, although its timing behavior may be different from the original programs

because of the run-time dilation introduced by instrumentation.

Basically, K-Trace scans the original assembly code, looks for memory instructions, and

inserts a trap code before each memory instruction. The trap codes that are inserted by K-

Trace will be executed to record the memory references in the trace. Each trap code starts

with #Trap, and ends with #EndTrap. Each trap is assigned a number, location id, which

can be used to identify the location of the trapped instruction. A trap code calls the add_trace

subroutine in the K-Trace runtime library to record the location id, address, and type of a

memory reference.

59

The inserted trap codes add to the length of the instrumented code. Because conditional

branches have limited branch offsets, K-Trace replaces conditional branch instructions with

jump instructions. The constant tables of instrumented assembly subroutines also have to be

modified so that the add_trace subroutine can be called within those subroutines.

In a uniprocessor system, the run-time dilation does not affect the accuracy of the col-

lected traces because the memory references are recorded in the same order as in the original

program. In a shared-memory multiprocessor system, the timing of memory references in a

set of processors is very important because the order of all references among all processors to

a particular global address can easily affect the amount of interprocessor communications.

Parallel Traces and Synchronization Points

On an MIMD machine like the KSR1, the overall instruction sequence of a parallel pro-

gram is not deterministic. In an MIMD machine, each processor executes its own instruction

stream at its own rate until a synchronization point is reached, therefore the order of the

instructions, and more particularly the memory references, between synchronization points is

not deterministic over the whole system. A trace generated by K-Trace may be just one case

from numerous possible traces of the same program. One may argue that using only one trace

is not enough to characterize the behavior of a program; however, it is almost impossible to

explore all the possibilities.

A trace format has been developed to solve this problem. By modifying the KSR1 Presto

thread-control library, synchronization points are automatically inserted into a trace by the

Trap 2:
 finop ; cxnop
 finop ; cxnop
 finop ; st8 %sp, -64(%sp)
 finop ; st8 %i6, -32(%sp)
 finop ; st8 %c6, -24(%sp)
 finop ; st8 %c10, -8(%sp)
 movi8 104, %i6 ; ld8 MAIN_$TRAP-MAIN_+8(%cp), %c6
 finop ; st8 %i6, -72(%sp)
 finop ; st8 %c14, -16(%sp)
 finop ; jsr %c14, 16(%c6)
 movi8 20002, %i6 ; ld8 MAIN_$TRAP-MAIN_(%cp), %c10
 finop ; st8 %i6, -80(%sp)
 finop ; cxnop
 finop ; cxnop
EndTrap 2:
 finop ; st8 %c14, 104(%sp)

Figure 2-8: An Example Inline Tracing Code.

60

K-Trace runtime library. Each processor sequentially outputs its memory references and syn-

chronization points to a separate file, which is called a local trace. This format improves the

performance of trace generation with parallel trace recording and provides more complete

information as to the order of memory referencing for trace-driven simulation tools, such as

K-LCache.

Local traces, rather than a single unified trace, are used because sequential file access to

a unified trace would be a bottleneck in trace generation, since only one processor at a time

can access the next element of a unified trace file. Figure 2-9 shows an example with three

local traces. CheckInBarr and CheckOutBarr are synchronization points, which separate the

traces into regions. The execution order of the regions is fixed by the synchronization opera-

tions. For example, Region-1 must complete before the other regions begin. The Region-3 can

begin only after Region-2a, Region-2b, and Region-2c all complete. However, the actual mem-

ory reference sequence among the three processors within Region-2 is uncertain.

2.4.3.2 Generating Traces with K-Trace

There are five steps for generating a trace for a program with K-Trace. As shown in

Figure 2-10, these steps are:

ProgramStart

ld 0

ld 8

st 100

CheckInBarr 1 seq 0

ld 100

ld 108

st 100

ld 100

ld 108

st 100

CheckOutBarr 1 seq 0

ld 900

st 900

ProgramEnd

CheckInBarr 1 seq 1

ld 110

ld 118

st 110

ld 110

ld 118

st 110

CheckOutBarr 1 seq 1

CheckInBarr 1 seq 2

ld 120

ld 128

st 120

ld 120

ld 128

st 120

CheckOutBarr 1 seq 2

Local-trace-1 Local-trace-3Local-trace-2

Region-2a

Region-3

Region-2b Region-2c

Region-1

Figure 2-9: A Parallel Trace Consisting of Three Local Traces.

61

1. Prepare the source files: Users of K-Trace can decide which portions of the source code to

trace and instrument those portions only. For example, in Figure 2-10, a1.f, b1.f, c1.f are

the portions to be instrumented. K-Trace provides a set of tracing directives, listed in

Table 2-7, which control the trace generation during run time.

2. Generate the assembly files: The source code portions that need to be instrumented are

compiled into assembly language.

3. Instrument the assembly files: Each assembly file generated in step 2 is assigned a differ-

ent file identification number and instrumented independently. The file identification

number will be recorded with the memory references in the corresponding file.

Original Source Files
a.f
b.f
c.f

Step 1

a1.f
b1.f
c1.f

a2.f
b2.f
c2.f

Prepare the source files

Step 2
Generate the assembly files

Step 3
Instrument the assembly files

Link the program

Step 5
Execute the instrumented program

a1.s
b1.s
c1.s

a1.i.s
b1.i.s
c1.i.s

exampl

_ktrace_00

f77 -para -S a1.f
 b1.f c1.f

ktrace 1 < a1.s > a1.i.s
ktrace 2 < b1.s > b1.i.s
ktrace 3 < c1.s > c1.i.s

f77 -para -o exampl a1.i.o b1.i.o

 ktracelib.o kbarrier.o
 c1.i.o a2.f b2.f c2.f paratrace.o

allocate_cells 16 exampl

paratrace.o
ktracelib.o

_ktrace_01
_ktrace_02
....

kbarrier.o

Step 4

Figure 2-10: Trace Generation with K-Trace.

62

4. Link the program: Link the instrumented assembly files with the un-instrumented files

and the K-Trace runtime library files.

5. Execute the instrumented program: The memory references in the instrumented portions

will be recorded in a trace when the instrumented program is executed. Multiple trace

files will be generated to store the memory references on different processors.

2.4.3.3 Limitations of K-Trace

A common disadvantage for inline tracing is that the library routines cannot be traced

without access to their source codes. Also, the mapping between data structures and

addresses is not available in the trace file because the KSR Fortran and C Compilers do not

generate a memory allocation map file when optimization is turned on, so the users need to

manually insert function calls (mark directives) to record key addresses of interesting data

structures in the trace file. These addresses can then be used to construct the map.

2.4.4 Local Cache Simulation: K-LCache

K-LCache takes a parallel trace generated by K-Trace, simulates the local cache coher-

ence protocol of the KSR1/2, and reports compulsory and coherence misses in the parallel exe-

cution. In general, simulation of a distributed-cache system is very time-consuming and

memory-demanding. As mentioned in Section 2.4.2, we focus on the coherence misses, which

represent true interprocessor communication. By simulating infinite distributed caches, K-

LCache extracts the compulsory and coherence misses much more efficiently than conven-

tional cache simulators, and the simulation can be performed on portions of the trace address

Directive Comments

ktrace_on Turn on tracing.

ktrace_off Turn off tracing.

ktrace_end Dump the references in buffer and stop the program execution.

ktrace_mark_location Output a location identification number to the trace file.

ktrace_mark_variable Output the identification number and the address of a variable
to the trace file.

Table 2-7: Tracing Directives.

63

space to reduce the memory requirements of K-LCache. We also introduce two types of com-

munications, required and optional, for characterizing the effect of cache line sharing. We

shall show how further speedups of the simulation can be achieved by decomposing the traces

and simulating disjoint portions of address space in parallel.

Categorizing Communications

 In an MIMD shared-memory computer, the order of memory references in a parallel exe-

cution may be nondeterministic. Nondeterministic communication patterns can occur when-

ever two processors access the same cache line in their execution of a particular parallel

region. We identify two types of communications in a parallel region:

• Required (minimum, inherent) communication, which occurs regardless of the actual mem-

ory reference order that occurs in a particular parallel execution run.

• Optional communication, which occurs only when one of a particular proper subset of the

memory reference orders occurs among accesses from multiple processors to the same

memory block.

Consider the example trace shown in Figure 2-9. A communication pattern obtained from

simulating that trace is shown in Figure 2-11. The labels R.C. indicate the required communi-

cations, and O.C. indicate optional communications. O.C. are due to subpage sharing, where

one processor invalidates the useful data in other local caches by writing to the same subpage.

Recall that a subpage is 128 bytes, so addresses 100-17F are in the same subpage. For exam-

ple, in local-trace 1, Region-1 ends with a store to address 100 and Region-2a begins with a

load from 100. However, either of other two processors may write the subpage where 100

resides by executing the “st 110” instruction in Region-2b or the “st 120” instruction in

Region-2c before the “ld 100” instruction in Region-2a is executed. The load could generate

communication if the subpage 100-17F is written by another processor, so this communica-

tion is optional. On the other hand, the required communications are independent of the order

of execution in the parallel region.

64

Finding Required Communications

For finding required communications, K-LCache simulates each local cache indepen-

dently of the others within each parallel region. The status of a set of local caches only needs

to be reconciled when a synchronization among them is found in their associated traces. As

parallel regions can be nested in a program, K-LCache maintains cache state accordingly.

Whenever processors check in at a region, K-LCache creates a next-level subpage state table

to record the local cache state transitions within this region for each processor. The local

cache state transitions for a processor are driven by the corresponding local trace and

recorded in the corresponding subpage state table. By searching the corresponding subpage

state table and the previous-level subpage state table (which holds the cache state before

entering the region), K-LCache checks if a memory reference can be satisfied by the local

cache. When those processors check out of that region, the previous-level subpage state tables

are updated coherently by reconciling the information in all the subpage state tables in that

region. K-LCache uses a recursive algorithm to deal with nested parallel regions. Dynami-

cally allocated subpage tables are used for storing local cache states at each nesting level.

This simulation reports the required communications for each parallel region.

ProgramStart

ld 0

ld 8

st 100

CheckInBarr 1 seq 0

ld 100

ld 108

st 100

ld 100

ld 108

st 100

CheckOutBarr 1 seq 0

ld 900

st 900

ProgramEnd

CheckInBarr 1 seq 1

ld 110

ld 118

st 110

ld 110

ld 118

st 110

CheckOutBarr 1 seq 1

CheckInBarr 1 seq 2

ld 120

ld 128

st 120

ld 120

ld 128

st 120

CheckOutBarr 1 seq 2

Local-trace-1 Local-trace-3Local-trace-2

Region-2a

Region-3

Region-2b Region-2c

Region-1

R.C.

R.C.

R.C.O.C.

O.C.

R.C

O.C.O.C.

R.C.

O.C.

R.C.

O.C.O.C.

R.C.

O.C.

R.C. - Required communication
O.C. - Optional communication

Figure 2-11: Communications in a Sample Trace.

65

Finding Optional Communications

The optional communications are detected by comparing the subpage state tables when

the processors check out of the region. The simulator reports the addresses, the processors,

the number of reads and the number of writes associated with the optional communications.

The user can locate shared objects in the source code by using the addresses and the processor

identifiers. The amount of optional communication can be estimated and bounded by the

number of reads and writes. Possible patterns for the optional communications can be

extracted by performing simulation on the shared subpages.

A very loose upper bound of the optional communications generated by a subpage

accessed in a parallel region is 0 if PRW = 1, or Min{W+R, W*(PR+1)} if PRW >1 , where W is

the number of writes to that subpage in that parallel region, R is the number of reads to that

subpage in that region, PR is the number of processors that have read that subpage in that

region, and PRW is the number of processors that have read and/or written that subpage in

that region. When PRW = 1, there is no optional communication since the access pattern of the

subpage is fixed. When PRW > 1, the subpage is shared by multiple processors. It is clear that

the number of misses is not larger than the number of memory references, i.e. R+W. When R

is larger than W*PR, each write to the subpage in the parallel region can generate at most one

write miss for the writing processor and PR read misses for the reads following this write, and

hence the number of misses should not exceed W*(PR+1). Note that when W=0, no optional

communications can occur in the parallel region, since the reads to the subpage in the region

can only result in required communications.

A large upper bound on optional communications can be the result of a large W and/or a

large PR for shared (PRW > 1) subpages, which indicates a potential performance hazard or

even (in the presence of insufficient synchronization in the code) an incorrect execution that

could occur when a particular memory reference order is executed in the parallel region.

There are two kinds of sharing that have been generally used to refer to such a problem.

• True-sharing: The sharing of a memory location is referred to as true-sharing if the loca-

tion could potentially be accessed by multiple processors. When true-sharing occurs within

one parallel region, the shared memory location could be accessed in a nondeterministic

order and could cause incorrect execution if at least one of these accesses is a write. For

66

example, if two processors both execute x=x+1 in the same parallel region, since (1) the

order of true-sharing accesses is uncertain, and (2) the operation is not atomic, the execu-

tion may not produce consistent results and thus should not be allowed in a well-orches-

trated code, unless the sharing accesses are protected with locks or orchestrated within a

reduction operation. K-LCache issues a warning message that flags the sharing accesses

when it detects true-sharing (with at least one write) within one parallel region. Given a

warning message, the programmer can then verify whether these sharing accesses comply

with the intended program semantics or are due to programming errors.

• False-sharing: The sharing of a subpage is referred to as false-sharing if there is no true-

sharing within that subpage, but that subpage is accessed by multiple processors. False-

sharing within in one parallel region can cause a performance hazard if some of the

accesses are writes. For example, the memory accesses labeled as optional communications

in Figure 2-11 are false-sharing accesses. False-sharing accesses can impose unnecessary

coherence misses on a parallel execution. The programmer may reduce false-sharing

accesses by reducing the number of falsely shared subpages using data layout techniques,

and/or by making local copies of falsely shared subpages (privatization), as further dis-

cussed in Section 3.3.

Parallel Execution of the Simulation with Multiple Processor Traces

Since K-LCache simulates each local cache independently of the others within each syn-

chronization region, simulation for memory references in different local traces can be per-

formed independently. Given the K-Trace output from an instrumented run of an application

code on P processors, K-LCache can simulate the P local traces concurrently on P processors.

The speedup of the parallel simulation is good when the parallel regions of the program are

long.

Accelerating the Simulation with Address Filtering

For extracting compulsory and coherence misses, simulation of memory references to dif-

ferent subpages can be performed independently because references to different subpages do

not interfere with one another in infinite caches. K-LCache is capable of simulating a filtered

trace, which contains only the memory references in a specific address range. The user can

focus on certain data structures by filtering out references to the others. We have developed a

filter program that is capable of reporting the address histogram of a trace and partitioning

67

trace files into evenly-sized subtrace files that contain different ranges of addresses. With

their smaller sizes and smaller address ranges, a separate simulation on each trace portion

done in parallel with the other portions can be performed much faster and requires less stor-

age than one simulation done on the original trace.

2.4.5 Analyzing Communication Performance with the Tools

For irregular applications, compile-time analysis of the communication overhead may not

be possible due to indirect array references. In this section, we show how our tools can be used

for analyzing the performance of an ocean simulation code, OCEAN, running on the KSR2.

We analyze the communication patterns, estimate the execution time, and propose ways to

reduce the communication overhead of the program, using the tools that we developed. We

found that more than 90% of the communication is of multicast, producer-consumer type,

where a data item is written by one processor, but read by multiple processors during the pro-

gram. This type of communication is commonly found in many parallel programs, such as

CRASH; the NAS Parallel Benchmarks [11] are also of this type.

OCEAN has indirectly indexed arrays, but the computation load is uniformly distributed

over the problem domain. The problem domain is evenly partitioned for the parallel execution.

The domain decomposition results in good load balance, yet the parallel speedups on the

KSR2 are 3.685 for 16 processors, and 3.74 for 25 processors. Using the KSR Performance

MONitor (PMON), we identify that the cause of this poor scalability is essentially due to the

local cache miss latency.

We collected a parallel trace of the first 3 iterations using K-Trace. There are 7 synchroni-

zation regions in each iteration and 120M memory references in 25 sub-trace files. The actual

working set size is about 80 MB. To reduce the memory requirement for carrying out a trace-

driven simulation with K-LCache, the set of sub-traces is partitioned into 70 portions, with a

4MB address range for each portion. The simulation reports the number of compulsory misses

and coherence misses for every address over the first 3 iterations.

68

Analyzing the Communication Patterns

First, we identify the data structures that cause coherence misses, as shown in Figure 2-

12(a). The number of misses is high in the first iteration due to compulsory misses. The num-

bers in 2nd and 3rd iterations indicate the communication overhead. To analyze the commu-

nication pattern further, we categorize the coherence misses by the degree of sharing of the

data item in the program. A data item can be (1) read and/or written only by one processor

(private), (2) read by multiple processors (read-only), (3) written by one and read by multiple

processors (producer-consumer), or (4) both read and written by multiple processors (e.g. syn-

chronization variables, data migration, reduction variables, or false sharing). Only the last

two types of data items cause coherence communication.

As Figure 2-12(b) shows, 97.6% of the data items are of producer-consumer type, and they

are the major source of the communication overhead. The communication pattern for a pro-

ducer-consumer type data item is visualized as shown in Figure 2-12(c). In this case, proces-

sors P2 and P3 are consumers that read the data item during consuming region. Processor P1

updates the data item during producing region. Consuming regions and producing regions are

separated by barriers to ensure correct access order. With the KSR2 write-invalidate protocol,

the first write to a subpage by P1 in each producing region invalidates the copies on P2 and

P3, and the first reads by P2 and P3 in consuming regions need to copy the updated subpage

from P1. These invalidation and copy operations compose the communication pattern. This

producer-consumer communication pattern is due to the data dependency between boundary

elements of the domain decomposition. The boundary elements are updated by their owners

in one parallel region, and some other processors request copies of the updated boundary ele-

ments in some later parallel region.

The above analysis and visualization can also be performed automatically by our tools,

without knowledge of the original program. Actually, K-LCache and the analysis can also be

integrated into K-Trace for runtime analysis, thereby saving trace storage. Compared to other

profiling tools, our tools provide more complete and detailed information about the objects,

their locations, and the patterns of communications.

69

Data Structure
Number of Cache Misses

Iteration 1 Iteration 2 Iteration 3

ETA 11584 1320 1320

VELD 30256 7630 7630

VELD2 30240 7626 7626

HOLD 15438 4206 4206

V 67231 25670 7674

U 98655 25621 7635

H 108509 66829 48885

Others 128309 1023 749

Figure 2-12: Coherence Misses and Communication Patterns
in an Ocean Simulation Code on the KSR2.

Category Number of
Subpages Percentage

Producer-Consumer 59882 97.6%

Multiple Read/Write 1486 2.4%

(a) Statistics of Cache Misses

(b) Categorizing Coherence Communications

P1

P2

P3

read

write

read

write

read read
invalidation

copy

barrier barrier barrier barrier

(c) Producer-Consumer Communication

valid

invalid

70

Knowing the sources of communications and the communication pattern, we can be more

accurate in orchestrating the communications. For example, to hide the communication

latency in OCEAN, a prefetch instruction can be issued by the consumer to request the data

before it is needed; or a post-store instruction can be executed immediately after the producer

writes the data to force the subpage that contains the data to be sent to the consumers, giving

them an opportunity to achieve an early update (a more detailed discussion of latency hiding

techniques on the KSR1/2 can be found in [52]). Since the invalidation traffic is an artifact of

the cache coherence protocol, its impact might be reduced by using a different protocol, e.g.

write-update, and/or using a relaxed memory consistency model that allows the invalidates to

be carried out after the writes. Information about communication patterns is useful in select-

ing and applying certain performance-tuning techniques as well as in automatic program con-

version from shared-memory to message-passing [102]. The above techniques, as well as some

other techniques that concern communication performance, are discussed further in Section

3.3.

2.5 Summary

In Section 2.1, we have introduced several aspects of machine performance characteriza-

tion and discussed its usefulness in assessing application performance. The machine model

that results from machine characterization can be used to roughly estimate the application

performance and expose problems in the performance.

In Section 2.2, we have discussed a range of machine-application interactions that are

often be associated with major performance problems. In particular, in Section 2.2.4, we

described the performance problems that we have speculated about with respect to running

CRASH-SP on the HP/Convex SPP-1000/1600. With the intuition provided by this discussion,

talented programmers may be able to envision specific machine-application interactions and

identify some major problems in their applications; but for most programmers, better tools are

needed to expose various run time events and assess application performance in a detailed,

accurate, and timely fashion.

In Section 2.3, we surveyed a range of existing performance assessment tools. Source code

analysis usually provides information that is most directly related to the source code, and is

thus particularly useful for hand-tuning the source code. Unfortunately, source code analysis

71

is often limited by the ambiguity of data and control flow in the application that cannot be

resolved before the actual execution. Profiling tools provide performance information by

directly measuring specific machine-application interactions during runtime. Such informa-

tion is useful for characterizing performance problems quantitatively, yet the exact cause of a

problem and locations where it arises may not be accurately pinpointed. Trace-driven analysis

can be used to study specific event patterns in the application. The trade-offs among function-

ality, cost, and accuracy of performance assessment are major concerns in designing and

using trace-driven tools. Various trace-driven simulation schemes have been discussed.

In Section 2.4, we described K-Trace and K-LCache, which were, to our knowledge, the

only trace-driven simulation tools available on the KSR1/2 for analyzing shared-memory com-

munications. Based on our new D-OPT cache miss categorization system and communication

categorization (required/optional communications), we have reduced the complexity of simu-

lating the KSR1/2 distributed cache system, and furthermore, we have provided two mecha-

nisms (multiple traces and multiple address ranges) to accelerate the simulation by executing

K-LCache on parallel processors. Although these tools are obsolete now, most techniques

mentioned in this section can be applied in the design of similar tools for recent shared-mem-

ory machines, such as the HP/Convex Exemplar and SGI Origin2000.

72

CHAPTER 3. A UNIFIED PERFORMANCE TUNING

METHODOLOGY

In Chapter 2, we discussed some common performance problems in irregular applications.

As these problems are often correlated, solving one problem may expose or aggravate in other

problems that reduce the overall improvement, or actually make the performance worse.

Unfortunately, most performance-tuning techniques previously developed tend to address

performance problems in regular applications or focus on solving individual performance

issues. For example, Tseng et. al. [103] have addressed these performance issues with unified

compilation techniques, but their work focuses on compiler techniques for regular applica-

tions.

 Currently, irregular applications are for the most part tuned manually by programmers,

as illustrated in Figure 3-1. Our work aims at techniques for irregular applications that will

application

machine

performance
assessment

Figure 3-1: Performance Tuning.

performance
tuning

modifying the application code

adjusting the machine

73

initially be used to aid in the hand-tuning effort, and hopefully, after more experience is

gained, will find their way into future compilers. In this chapter, a unified performance-tun-

ing methodology is presented for solving these performance problems. We show how perfor-

mance tuning can be systematically conducted by addressing individual performance issues in

a logically-ordered sequence of steps.

3.1 Step-by-step Approach

Figure 3-2 summarizes the performance-tuning scheme that we use to improve the appli-

cation performance. The numbers show the order of the steps, and the arrows show the depen-

dence between the steps. When the program is modified in a certain step, the earlier steps

found by following the backward arrows may need to be performed again as they may conflict

��������
�	
����
	

��	�
	�����

����������
�
���
	������

������

������
�����	
������
�

���	����

����������
�
���
	��������

������

�������
�������
�
��

Serial program

Performance-tuned parallel program

Profile or model

Load distribution
in each phase

for each phase
Profile or model
for multiple phases

Combined load
distribution

Profile showing
dynamic
behavior

Updated load
distribution
during runtime

Figure 3-2: An Ordered Performance-tuning Methodology

�����

�����

����

����! ����"

#������
$
���������
�
��	�
	�����

��	����
����
�	
%����
����

����&

����'

74

with or be able to take advantage of the modification. For example, load balancing techniques

in Steps 4, 6 and 7 may suggest different partitionings of the domain, which would cause dif-

ferent communication patterns that may need to be re-optimized in Step 2. Changing the

memory layout of arrays to eliminate false sharing in Step 2 might conflict with certain data

layout techniques that improve processor performance in Step 3. Changing communication

and processor performance may affect the load distribution which then needs to be re-bal-

anced. In general, this graph detects various types of performance problems in an ordered

sequence, and a step needs to be repeated only if particular problems are detected and dealt

with. Less aggressive optimization techniques that are more compatible with one another are

better choices in the earlier phases of code development.

Through the following sections, we classify the performance issues and possible actions to

address them in each step. The performance issues and actions are numbered sequentially as

they arise in the discussion. Issue x and action y are referred as (IS x) and (AC y) respectively.

At the end of this chapter, we summarize the correlations among these tuning steps, perfor-

mance issues, and actions.

3.2 Partitioning the Problem (Step 1)

In Step 1, the problem domain is partitioned for parallel execution. We assume that paral-

lelization of the application is achievable, and, as mentioned in Section 1.2, domain decompo-

sition is used for partitioning.

Issue 1 - Partitioning an Irregular Domain

If the load is evenly distributed over the data domain, the decomposition would best parti-

tion the domain into subdomains of equal size. One straightforward way is to assign ele-

ments {1,2, .. } to processor 1, elements { +1 ... } to processor 2,

etc., where N is the number of elements in the data domain and p is the number of proces-

sors in the system. However, for irregular applications, such as CRASH-SP (see Section

1.4), this simple decomposition often leads to enormous communication traffic and poor

load balance. Hence, more sophisticated domain decomposition algorithms are often used

to partition the domain for better performance.

N p⁄ N p⁄ 2N() p⁄

75

Action 1 - Applying a Proper Domain Decomposition Algorithm for (I-1)

Optimal partitioning schemes are computationally difficult to find, and most domain

decomposition algorithms use heuristics that attempt to partition the problem into load

balanced subdomains and minimize the communications between subdomains. Some

example decomposition algorithms are: binary decomposition, recursive coordinate bisec-

tion (RCB), recursive graph bisection (RGB), recursive spectral bisection (RSB), greedy

algorithms and simulated annealing. References [104][105][106] provide comparisons of

several algorithms. None of the algorithms consistently produces the best partitioning.

In this step, domain decomposition is employed primarily for the purpose of partitioning

the problem. It can be difficult for the user to optimize domain decomposition initially

without going through the later steps. Fine tuning of domain decomposition in the later

steps is usually required to remedy the imperfections of the partition. Further discussion

is provided in the sections devoted to later steps.

3.2.1 Implementing a Domain Decomposition Scheme

In this subsection, we address the following questions. What information do domain

decomposition algorithms require us to extract from the application? How do we implement a

domain decomposition scheme in the application? Does the domain decomposition scheme

cause extra run time overhead?

First, the elements of the data structures associated with the domain and the connections

among these elements are identified and abstracted to a graph (referred to hereafter as a

domain graph) that captures most of the aspects of the data domain that are most relevant to

decomposition. A domain decomposition algorithm partitions the domain graph into sub-

graphs by providing the user with descriptions of these sub-graphs as well as the communica-

tion dependence between sub-graphs which are represented by cut edges, as shown in

Figure 3-3(a).

For static applications whose load distribution does not vary during the runtime, domain

decomposition needs to be performed only once per application, and the cost for domain

decomposition is usually negligible. For dynamic applications that require periodic re-parti-

tioning of the domain during a run, the frequency (and hence cost) of domain decomposition

76

(a) domain decomposition (b) connectivity graph (c) communication dependence graph

Figure 3-3: Domain Decomposition, Connectivity Graph, and
Communication Dependency Graph

S1

S2

S3

S4

S1

S2

S3

S4
S1

S2

S3

S4

program CRASH-SD

....
call Domain_decomposition_algorithm(Neighbor, Num_Elements,

 Num_Subdomains, Num_Elements_in_subdomain, global_id)
t=0

c First phase: generate contact forces
100 doall d=1,Num_Subdomains

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do
end do

c Second phase: update position and velocity
200 doall d=1,Num_Subdomains

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_glass(i, Position(i), Velocity(i), Force(i))
 end if
end do
end do

if (end_condition) stop
t=t+t_step
goto 100
end

Figure 3-4: A Shared-memory Parallel CRASH (CRASH-SD)

77

should be traded off against the performance gained by the improved balance. This is further

discussed in Section 3.8 (Step 7).

In Figure 3-4, we show a shared-memory parallel version of CRASH (CRASH-SD) with

domain decomposition (SD stands for Shared-memory Domain-decomposed). Note that the

doall statements are equivalent to the c$dir loop_parallel directives in Convex For-

tran, but doall is used hereafter for its simplicity. CRASH-SD calls

Domain_decomposition_algorithm() to partition the domain graph, which is specified by

array Neighbor(*,*), into Num_Subdomains subdomains. The decomposition returns the

number of elements in each subdomain in the array Num_Elements_in_subdomain. Subdo-

main d owns Num_Elements_in_subdomain(d) elements, and the original/global identifier

of ii-th element of subdomain d is stored in global_id(ii,d). The doall parallel directives

perform the loops in parallel such that each processor handles the computation of an equal (or

nearly equal) number of subdomains, usually one. A loop with a doall directive forms a paral-

lel region, where the processors all enter and leave the region together. This program runs on

shared-memory machines without the need to specify interprocessor communications explic-

itly.

For message-passing programming, the communication dependence information from the

domain decomposition algorithm is used to specify explicit messages. Such communication

dependence information can be considered as a connectivity graph, where each subdomain

(sub-graph) is represented by a vertex and the communications between subdomains are rep-

resented by edges, as shown in Figure 3-3(b). Given the data access behavior of the program, a

connectivity graph is transformed to a communication dependence graph (CDG), as shown in

Figure 3-3(c), which determines the communication between each pair of processors. There

are elements near the boundaries of subdomains that need to be referenced by processors

other than their owners.

In this section, a pseudo message-passing code is used to illustrate message-passing, as

shown in Figure 3-5. The communication is orchestrated in three steps: (1) gathering, (2)

exchanging, and (3) scattering. Gathering and scattering is used to improve the efficiency of

data exchange. In the gathering step, each processor uses a list boundary(*,my_id) to

gather the contact forces of the boundary elements in its subdomain into its gathering buffer,

78

buffer(*,my_id), where my_id is the processor ID, ranging from 1 to Num_Proc. During

the exchanging step, each processor counts synchronously with variable p from 1 to

Num_Proc. At any time, only the processor whose processor ID (my_id) matches p broadcasts

the data in its own gathering buffer to all the other processors, and all the other processors

receive. At the end of the exchanging step, all the processors should have identical data in

their gathering buffers. Then in the scattering step, each processor updates its copy of array

Force by reversing the gathering process, i.e. scattering buffer(*,p) to Force. Broadcast-

ing is used in this example for simplicity, but it can be replaced with other communication

mechanisms for better performance, as discussed in Section 3.3.

3.2.2 Overdecomposition

To solve a problem efficiently on N processors, we need to decompose the problem into at

least N subdomains. The term, overdecomposition, is used here to refer to a domain decompo-

sition that partitions the domain into M (M>N) subdomains. A symmetric overdecomposition

c First phase: generate contact forces
100 do ii=1,Num_Elements_in_subdomain(my_id)

 i=global_id(ii,my_id)
 Force(i)=0
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Contact_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Gather contact forces
do ii=1,Num_boundary_elements(my_id)
 buffer(ii,my_id)=Force(boundary(ii,my_id))
end do

c Exchange contact forces
do p=1,Num_Proc
 if (p .eq. my_id) then

broadcast(buffer(1,p),1,Num_boundary_elements(my_id))
 else

receive(p,buffer(1,p))
 end if
end do

c Scatter contact forces
do p=1,Num_Proc
 if (p .ne. my_id) then
 do ii=1,Num_boundary_elements(p)

Force(boundary(ii,p))=buffer(ii,p)
 end do
 end if
end do

Figure 3-5: A Message-passing Parallel CRASH (CRASH-MD),
A Psuedo Code for First Phase is shown.

79

contains a multiple of N subdomains, i.e. k*N, where k subdomains are associated with each

processor. For multithreaded processors, overdecomposition can be a convenient and efficient

strategy for generating multiple threads for each processor. Overdecomposition is also used in

the following steps.

3.3 Tuning the Communication Performance (Step 2)

3.3.1 Communication Overhead

From a processor’s point of view, the communication overhead, without overlap, is approx-

imately: (communication traffic)*(average communication latency). Reducing the communica-

tion traffic and reducing the average communication latency should result in less

communication overhead. Also, since the communication network may provide limited con-

nectivity and bandwidth, the user should try to avoid causing high communication traffic to

the network or to any processor.

In this section, we discuss the techniques for reducing the communication overhead. We

consider three classes of approaches: (1) reducing the communication traffic, (2) reducing the

communication latency, and (3) avoiding network contention. We discuss code/data restructur-

ing techniques and investigate possible machine enhancement features that can help reduce

the communication overhead. It is important to analyze the communication patterns and

evaluate the communication costs before applying the techniques because some techniques

require more programming work and some generate extra computation overhead.

3.3.2 Reducing the Communication traffic

For reducing the communication traffic, we consider two goals: reducing the amount of

data to be communicated, and improving the efficiency of the communication traffic. Note that

most issues and techniques in this section are discussed primarily for shared-memory applica-

tions. Message-passing applications, thanks to their explicit communication patterns, are less

prone to the problems discussed here, but more dependent on the programmer’s skill. An inef-

ficiently written message-passing program can generate superfluous communications, while

in a shared-memory program, some superfluous communications are eliminated, and others

are generated due to cache effects.

80

3.3.2.1 Reducing the Amount of Data to Be Communicated

Issue 2 - Exploiting Processor Locality

Besides spatial locality and temporal locality, another form of locality that is important in

a multiprocessor context is processor locality - the tendency of a processor to access a data

item repeatedly before an access to this item from another processor. Processor locality is

an important key for reducing the amount of data that needs to be communicated. For a

data item that shows good processor locality, it is best distributed to a location near the

processor(s) that will use the data item soonest and most frequently so as to reduce the

traffic caused by accessing the item.

Action 2 - Proper Utilization of Distributed Caches for (I-2)

Distributed caches are often used as a hardware solution for facilitating processor locality

by moving the data close to whichever processor accesses the data. Distributed caches pro-

vide a convenient solution that can take advantage of the processor locality in the applica-

tion. With distributed caches, the programmer can pay less attention to the physical data

layout and data distribution.

However, distributed caches may cause extra overhead for cache coherence operations,

and thus degrade the performance unless sufficient processor locality exists. Therefore,

those data items that exhibit poor processor locality, e.g. data that migrate frequently

from one processor to another, may yield better performance if not cached.

Action 3 - Minimizing Subdomain Migration for (I-2)

Subdomain migration may occur if the processor assignment for a subdomain is not speci-

fied by the program. For example, a doall statement can arbitrarily assign the tasks in the

loop to the processors. In a self-scheduling or dynamic scheduling scheme, the task-pro-

cessor mapping is decided by the runtime system. In our experiences with KSR1/2 and

HP/Convex Exemplar, we found that subdomain migration can seriously degrade proces-

sor locality. To avoid unnecessary subdomain migration, an explicit specification of the

mapping of subdomains to processors, which permanently binds data items to specific pro-

cessors under program control is best used.

81

Issue 3 - Minimizing Interprocessor Data Dependence

Even with good processor locality, processors still need to communicate in order to satisfy

interprocessor data dependence. When a program is parallelized, some of the data depen-

dencies in the serial program become interprocessor data dependencies in the parallel ver-

sion. For reducing the amount of communication, interprocessor data dependency should

be minimized.

Action 4 - Minimizing the Weight of Cut Edges in Domain Decomposition for (I-3)

Most domain decomposition algorithms attempt to minimize the number, or better yet,

the total weight, of the cut edges. Minimizing cut edges reduces the data dependencies

between subdomains, which in turn reduces interprocessor data dependencies between

the corresponding processors.

3.3.2.2 Improving the Efficiency of the Communication Traffic

Issue 4 - Reducing Superfluity

A block is defined here as the unit of data transfer for communications. For example, the

block size is 256 bytes (subpage) in the KSR1/2, or 64 bytes in the Convex Exemplar. A

large block size can take advantage of the spatial locality in the code and amortizes the

latency overhead if the entire block will eventually be used by the processor. However, it

is inefficient for a processor to acquire a block from another processor if only part of the

block is used before it is invalidated (or replaced) in a finite size cache, which shows super-

fluity. Superfluity can be measured by averaging the number of unused words in an inval-

idated block. Reference [107] has defined a metric, the superfluity coefficient, for

measuring the efficiency of cache-memory traffic in uniprocessor systems. We extended

the use of the superfluity coefficient for measuring the efficiency of communication traffic

in parallel systems:

where Freqi is the number of block invalidations that contain i unused words and s is the

SFC

i Freqi×
i 0=

s 1–

∑

s Freqi

i 0=

s

∑×

--------------------------------=

82

block size. SFC equals 0 if every word in each loaded block is referenced at least once

before the block is invalidated. SFC equals (s-1)/s if only one word is referenced in each

loaded block. High superfluity coefficients indicate poor efficiency of the communication

traffic. Rivers and Davidson [107] have shown the use of the superfluity coefficient for

locating spatial locality problems in serial executions. In this research, we propose to use

the superfluity coefficient for exposing spatial and processor locality problems.

Serious superfluity problems may be caused for two major reasons:

• Inefficient layout of the data structures may result in poor spatial locality. Array pad-

ding is often used to eliminate false-sharing and align memory references on 32-bit,

64-bit, or cache-line-size boundaries, but it causes superfluity since cache blocks that

contain pad elements are not entirely used.

• Frequent invalidation/update traffic: False-sharing occurs if different portions of a

cache block are owned by different processors. When one processor writes to a false-

shared block, it may be required to invalidate (or update) copies of the cache block in

the caches of other processors, which invalidates, or redundantly updates, portions of

the block that may still be needed by those processors. In addition, the acquisitions

and reaquisitions of such blocks cause superfluity in the caches of the acquiring pro-

cessor, since some portions of false-shared blocks are not needed by the acquiring pro-

cessor.

Issue 5 - Reducing Unnecessary Coherence Operations

Unnecessary coherence operations occur when processor locality in a code is different

from what the cache coherence protocol expects. Under write-update protocols, consecu-

tive writes to the same block by a processor may generate unnecessary update traffic if no

other processors read that block during those writes. Write-invalidate protocols may

result in redundant invalidation traffic, e.g. for the producer-consumer sharing patterns

that we discussed in Section 2.4.5. Thus, depending on the pattern of accesses to shared

data in the program, certain cache coherence protocols may result in more efficient com-

munication traffic than others. Some adaptive protocols have been proposed that combine

invalidation and update policies in a selectable fashion [108]. Eliminating some unneces-

sary coherence operations may also reduce superfluity because of less frequent invalidate/

update traffic.

83

Action 5 - Array Grouping for (I-4)

A common solution for reducing superfluity is to group certain data structures that are

used by a processor in the same program regions. Grouping several arrays into one inter-

leaved layout can be done statically by redefining the arrays in the source code, or dynam-

ically by gathering and scattering the arrays during runtime. Static methods usually rely

on source code analysis and may require permanently changing the layout of global vari-

ables. Dynamic methods reduce superfluity locally without interfering with other pro-

gram regions, but introduce extra overhead in gathering and scattering. A systematic

method can be found in [45][50].

Action 6 - Privatizing Local Data Accesses for (I-5)

Making a private copy1 of data items in false-shared blocks can avoid false-sharing, if the

item is repeatedly accessed solely by one processor in some portion of the program.

Figure 3-6 shows the use of private copies to enhance data locality within a processor and

reduce false-sharing. Before the main loop starts, each processor makes a private copy of

the data structures with local indices, e.g. p_Force(i) is a private copy of Force(global(i,d))

for subdomain d. Before computing the forces, each processor acquires remote data

(Input) by copying the data from globally shared variables to private variables. After the

forces are computed, each processor updates the shared forces (Output) by copying the

data from private forces (p_Force) to globally shared forces (Force). The arrays, Input and

Output, list the input variables and output variables.

Since the private data structures are indexed with local indices, the spatial locality is

improved for the access patterns in the loops that iterate with local indices. False-sharing

is reduced because accesses to private data structures do not cause communications. If

each data element is smaller than the block size and the access is nonconsecutive, as men-

tioned in Section 3.2.1, gathering and scattering can be used to improve the efficiency.

Figure 3-7 shows an example of using a set of buffers (gather_buffer) for gathering and

scattering forces.

Since the integrity of private data copies is no longer protected by the coherence mecha-

nism, updates are now explicitly specified in the program in a fashion similar to those

used in the message-passing code in Figure 3-5. It should be noticed that privatization,

1. Convex Fortran allows the programmer to use thread-private directives to generate private copies of variables so
that when different threads access the same variable name, they actually access their private copy of that variable.

84

gathering and scattering generates extra computation overhead for calculating indices

and local copies, and an extra burden on the software to assure their coherence with

respect to the original globally shared structure. Therefore, copying should not be used

when it is not necessary, i.e. when the communication overhead is not a serious problem

or can be solved sufficiently by other means with less overhead.

c$dir thread_private(p_Force,P_Position,p_Velocity,p_No_of_neighbors)
c$dir thread_private(p_Neighbor, Input, output)

c Make private copies
doall d=1,Num_Subdomains
do ii=1,No_of_elements_in_subdomain(d)
 i=global_id(ii,d)
 p_Force(ii)=Force(i)
 p_Position(ii)=Position(i)
 p_Velocity(ii)=Velocity(i)
 p_No_of_neighbors(ii)=No_of_neighbors(i)
 do j=1,p_No_of_neighbors(ii)

p_Neighbor(j,ii)=Neighbor(j,ii)
 end do
end do
call Initialize_Input_Output(Input,Output)
end do

c First phase: generate contact forces
100 doall d=1,Num_Subdomains
c Acquire input elements

do i=1,No_of_input_elements(d)
 p_Position(Input(i))=Position(global_id(Input(i)))
 p_Velocity(Input(i))=Velocity(global_id(Input(i)))
end do
do i=1,No_of_elements_in_subdomain(d)
 p_Force(i)=Contact_force(p_Position(i),p_Velocity(i))
 do j=1,p_No_of_neighbors(i)
 p_Force(i)=p_Force(i)+

 Propagate_force(p_Position(i),p_Velocity(i),
 p_Position(p_Neighbor(j,i),p_Velocity(p_Neighbor(j,i))

 end do
end do

c Make output available to other processors
do i=1,No_of_output_elements(d)
 Force(Output(i))=p_Force(global_id(Output(i)))
end do
end do
.....
goto 100

Figure 3-6: Using Private Copies to Enhance Locality and Reduce False-Sharing

85

Action 7 - Optimizing the Cache Coherence Protocol for (I-5)

Figure 2-12(c) shows an example of producer-customer communication patterns under a

write-invalidate protocol. For the same program running on a system using a write-

update protocol, the communication pattern would look like Figure 3-8, where each copy-

invalidation pair is replaced with a single update. Suppose each of the consumers reads

the production variable (x) once after the producer writes x, and then the producer writes

x once before the consumers read x again, using a write-update cache coherence protocol

may result in better performance than using a write-invalidate protocol, since the number

of transactions is less when a write-update protocol is used. Also, update can be performed

more efficiently if the system supports multicasting and/or asynchronous (nonblocking)

updates. However, if the producer writes x multiple times consecutively, a write-update

protocol may generate more transactions than a write-invalidate protocol does, since the

producer is required to update x for each write to x under a write-update protocol.

Although there are variations or hybrids of the above two protocols that have been devel-

oped to solve the above problems, none of them constantly performs best for all kinds of

applications.

It should be noted that privatization (see (A-6)) can significantly simplify the access pat-

terns of global variables and hence reduce the chances of consecutive writes to one vari-

able. Thus, the performance of a write-update protocol may be improved by privatizing

....
c Make output available to other processors

do dd=1,Num_Subdomains
 if (dd.ne.d) then

do i=1,No_of_comm_elements(dd,d)
 gather_buffer(i,dd,d)=p_Force(Output(i))

end do
 end if
end do
end do

c Second phase: update position and velocity
200 doall d=1,Num_Subdomains
c Acquire input elements

do dd=1,Num_Subdomains
 if (dd.ne.d) then

do i=1,No_of_comm_elements(dd,d)
 p_Force(Input(i))=gather_buffer(i,dd,d)

end do
 end if
end do
....

Figure 3-7: Using Gathering Buffers to Improve the Efficiency of Communications

86

those shared variables and updating the global copy only once prior to the accesses by

readers. In addition, the release consistency memory model (see (A-9)) can help reduce the

number of updates required by consecutive writes.

It is possible to reduce the invalidation/update traffic if the user is allowed to choose a

suitable protocol, either for an entire application, block by block, or even dynamically dur-

ing the run. Some machines have certain features, such as automatic update in the KSR1/

2, which may automatically update invalidated copies that lie somewhere along the

return path of a read miss. For such machines, it is possible to make the communication

traffic more efficient by reallocating the threads among the processors or rearranging the

access patterns so as to automatically update as many copies as possible [48]. With trace-

driven simulation tools like K-Trace/K-LCache, the performance of each protocol can be

evaluated and used to help choose suitable protocols.

Action 8 - Cache-Control Directives for (I-5)

If the communication patterns are known during compile-time, unnecessary coherence

operations may be reduced by overriding the regular coherence protocol with cache-control

directives, when such directives are supported by the system.

For example, we can design a machine could be designed to support noncoherent memory

instructions that load or store data that reside in a remote cache without bringing the

data into the local cache and modifying the status of the data in the remote cache. Some

systems have noncacheable (or cache-bypass) memory regions, e.g. for memory-mapped I/

O addresses, whose contents are not cached, primarily because the data in those areas are

updated frequently by different processors (or I/O devices) between consecutive accesses.

For certain shared-memory machines whose hardware does not enforce cache coherence,

such as Cray T3D, programmers must manually insert cache control directives, such as

flush, to periodically ensure the cache coherence in their programs.

87

Noncoherent memory accesses and noncacheable data structures, if they are supported by

the system, may be used to reduce unnecessary invalidation/update traffic in producer-

consumer patterns. Figure 3-9 shows how the invalidation in a producer-consumer pat-

tern can be eliminated with noncoherent reads. An NC (NonCoherent) read always copies

a block from the owner, p1, but does not change the status of the block in p1. The pro-

grammer is responsible for the use of any data items in that block in p2 and p3 since

writes from p1 will neither update nor invalidate that block. In this case, the noncoherent

copies can be safely used in those regions where updates of the block do not occur.

At one extreme, the programmer can use noncoherent memory instructions (or cache-

bypass) and privatization to completely and explicitly control the coherence traffic, as if

programming for a non-cache-coherent or message-passing machine. Such a programming

style is similar to what we have shown in Figure 3-6 and Figure 3-7, except that the pro-

gram carries out interprocessor communications by using noncoherent instructions. For

example, the copying from gather_buffer to p_Force in Figure 3-7 can be implemented

by NC reads, which read the contents of gather_buffer without affecting the exclusive

ownership of gather_buffer. Thus, writing gather_buffer later by owners would not

generate invalidation traffic.

Figure 3-8: Communication Patterns of the Ocean Code with Write-Update
Protocol.

p1

p2

p3

read

write

read

write

read read

update barrier

Figure 3-9: Communication Patterns of the Ocean Code with Noncoherent Loads.

p1

p2

p3

write

NC read

write

NC read NC read

noncoherent copy

NC read

barrier

88

However, cache-control directives are not popular in commercial machines, due to their

complexity of implementation and difficulty of use. The instruction ld.ex in the KSR1/2

performs a load, but also acquires the exclusive ownership of the cache block for the load,

which is useful when the load is soon followed by a store to the same memory location. A

study of the Convex SPP-1000 by Abandah and Davidson [10] shows that shared-memory

point-to-point communication performance could be improved by 53% if the communica-

tion variables are not cached. In addition to source code analysis, the communication pat-

terns extracted by K-Trace/K-LCache can be used to decide where to apply such

instructions in the program.

Action 9 - Relaxed Consistency Memory Models for (I-5)

Most distributed shared-memory machines today, like KSR1/2 and Convex Exemplar,

maintain a sequential consistency memory model, where coherence operations are issued,

roughly speaking, for every write to a shared memory that has other valid copies out-

standing. For many applications, sequential consistency is unnecessarily restrictive, and

more relaxed memory consistency models can be used to reduce unnecessary coherence

operations.

One of the most relaxed memory models, the release consistency model, issues coherence

operations for every synchronization operation instead, generally generates fewer coher-

ence operations (mainly for writes) than sequential consistency. Eager release consistency

models send coherence operations to all processors to inform them that cache data that

has been modified by the releasing processor. In lazy release consistency, however, mes-

sages travel only between the last releaser and the new acquirer, which results in even

fewer coherence operations.

However, release consistency does increases hardware and programming complexity, thus

it is not popular for implementation on commercial hardware cache coherent shared-

memory machines. On the other hand, studies show that the performance of some soft-

ware-emulated virtual shared-memory systems benefit greatly from relaxing their memory

consistency models [109][110]. Depending on the application, the performance improve-

ment resulting from using release consistency ranges from a few percent to several hun-

dred percent, on systems where coherence operations usually take milliseconds to

complete.

89

Action 10 - Message-Passing Directives for (I-5)

The code in Figure 3-6 is programmed in a message-passing style. If the machine supports

both message-passing and shared-memory programming, this capability raises a ques-

tion: Which communication mechanism leads to better communication performance? Usu-

ally, the block size and latency of shared-memory accesses are smaller than typical

message sizes and latencies, but the bandwidth of the message channels may be higher.

Communicating via messages can eliminate unnecessary cache coherence traffic, if the

message-passing library is optimized by using a proper coherence protocol or cache control

directives, as discussed in (A-7) and (A-8). Using the communication patterns exposed by

the K-trace/K-LCache tools, automatic program conversion from shared-memory to mes-

sage-passing has been experimented with on the KSR1/2 with encouraging results [102].

A judicious mixture of shared-memory accesses and messages in a program would gener-

ally result in the best communication performance; performance models of each communi-

cation mechanism should be used to determine where each mechanism should be used.

3.3.3 Reducing the Average Communication Latency

For reducing the average communication latency, we consider three approaches: (1) reduc-

ing the distances of communication, (2) hiding the communication latencies, and (3) reducing

the number of transactions. The first approach minimizes latencies of communications by

moving data to locations near the processor that accesses the data. The second approach over-

laps communication with computation (and with other communications) either by starting

communications earlier than when the information is required, or by starting independent

computation when the processor is waiting for the communication to complete. We also dis-

cuss how reducing the number of transactions reduces communication overhead, such as the

use of gathering and scattering in message-passing programming to reduce the number of

times that the overhead of setting up communication channels is incurred. It is useful for

shared-memory programs if the machine supports efficient accesses to long-blocks in memory.

In this section, we consider the communications that remain after applying the communica-

tion traffic reduction techniques discussed in the previous section.

90

Issue 6 - Reducing the Communication Distance

The communication distance may significantly affect communication latency in some

interconnection topologies; in others, it is an insignificant factor. Topologies such as buses,

crossbars, multistage networks, and unidirectional rings have near constant communica-

tion latency overall processor-memory pairs, provided that network contention effects are

minimal (the effects of network contention are discussed in Section 3.3.4). Communication

latency on some topologies like meshes, hypercubes and bidirectional rings, or hierarchical

topologies, depends on the distance (or the number of hops) in the path. For such systems,

reducing the distance of communication may be of interest when hop times are signifi-

cant.

Action 11 - Hierarchical Partitioning for (I-6)

In machines with hierarchical communication structures, the interprocessor data depen-

dencies that can cause higher communication latencies should be minimized first. For

example, on a 32-processor Convex Exemplar, domain decomposition should be performed

by first partitioning the domain into 4 large subdomains for the 4 hypernodes, and then

partitioning each large subdomain into 8 small subdomains for the processors within each

hypernode.

Action 12 - Optimizing the Subdomain-Processor Mapping for (I-6)

Given a decomposition and a communication dependence graph, finding a mapping that

optimizes the performance for the network topology of interest can be computationally

expensive if all possible mappings need to be evaluated. There are pn possible mappings

for n subdomains onto p processors. For each mapping, the total communication latency

for each pair of subdomains is calculated by multiplying the distance between the two pro-

cessors where two subdomains reside by the number of communications between those

two subdomains.

For large systems, heuristic algorithms may be used to optimize the mappings. Some

domain decomposition packages, e.g. Chaco [28], use heuristics to improve mappings to

hypercube and mesh architectures. For a particular domain, they first perform decomposi-

tion and then attempt to optimize the subdomain-processor mapping.

However, when decomposition and mapping are performed separately, the “best” decom-

position followed by the best mapping for that partitioning does not necessarily result in

the best overall performance. Finding an optimal mapping that assigns each domain ele-

91

ment to a processor is more complex than grouping elements into subdomains and then

assigning the subdomains to processors, which is why domain decomposition packages

normally choose to decompose into subdomains first.

Issue 7 - Hiding the Communication Latency

In an application, some communications and computations can, at least theoretically, be

executed in parallel, as long as they are mutually independent. The idle time that a pro-

cessor spends waiting for communication can be reduced if the communication is exe-

cuted well in advance of the need, or the processor executes some independent

computations during the wait.

Action 13 - Prefetch, Update, and Out-of-order Execution for (I-7)

There are various techniques for hiding communication latency on shared-memory

machines. Some machines support prefetch and update instructions that can be used to

move data close to a processor before it actually needs that data. Prefetching is useful for

hiding communication latency when the communication pattern is predictable and the

distance between the prefetch and the instructions that actually need that data is far

enough [52][51]. Unfortunately, most commercial shared-memory machines we have

worked with do not allow a large number of pending prefetches, which can make prefetch-

ing an inefficient technique. It has been shown that a great reduction (53%-86%) in coher-

ence cache misses can be achieved on the KSR1 by using prefetch for a finite element

code, but the total execution time still may not be significantly reduced due to the over-

head of the prefetch instructions [51].

HP/Convex’s latest Exemplar, SPP-2000, is capable of executing 10 outstanding cache

misses and 10 prefetches simultaneously on each of its PA 8000 processors [7]. As with

prefetching, supporting out-of-order execution while there are outstanding cache misses

allows the processor to hide some of the cache miss latencies. However, the maximum

number of outstanding misses allowed (10), the size of the instruction reorder buffer (56),

and the data dependencies in the application interact to limit the effectiveness of this

approach in hiding communication latency. In comparison, prefetches can be issued well

ahead of the use of data to hide more latency; but prefetch instructions increase the load

on the instruction fetching unit, and may pollute the data caches if used unwisely or too

early.

92

Action 14 - Asynchronous Communication via Messages for (I-7)

It is possible to realize asynchronous communications on hierarchical shared-memory

machines by, for example, dedicating one processor in a cluster for communicating with

other clusters. When the traffic among clusters is heavy, dedicating one processor for com-

munication may improve overall performance. If the machine supports message-passing

in shared-memory programs, asynchronous communication directives can also be used for

hiding communication latencies.

Action 15 - Multithreading for (I-7)

Multithreading can also be used to hide communication latencies [111][112]. Whenever

one thread issues a communication operation, the processor then quickly switches to

another thread. To be effective, the latency of thread switching should of course be much

smaller than that of the communication operation. Multithreaded or multiple-context pro-

cessors that minimize thread switching time are required for high performance shared-

memory systems to utilize this multithreading solution. For software shared memory sys-

tems implemented on networks of workstations, in which shared memory operations are

slower, multithreading can be competitive with less hardware support and may achieve

higher relative performance improvement than for shared memory systems with faster

hardware-based sharing. Multithreading can also be applied to message-passing codes.

Issue 8 - Reducing the Number of Communication Transactions

Part of the communication latency is spent in setting up the communication channel and

synchronizing the senders and the receivers. Such initialization overhead is proportional

to the number of communication transactions. Therefore, it would be more efficient to sat-

isfy the communication that is required by the application with fewer transactions, e.g. by

grouping multiple messages into one message or using long-block memory accesses.

Action 16 - Grouping Messages for (I-8)

To reduce the number of communication transactions, one technique that has often been

employed in message-passing codes is grouping messages. For example, some messages

that are sent and received by the same pair of processors can be combined into one mes-

sage. Some messages that are passed to different processors by one processor can be com-

bined and multicasted with one message from the sender. Some messages that are passed

to the same processor by different processors can also be combined en route and received

93

as one message, e.g. by using reduction operations in MPI. These operations, as well as

gathering and scattering, are supported in MPI for reducing the number of messages,

which are also referred to as collective communication functions in [113].

Action 17 - Using Long-Block Memory Access for (I-8)

Unlike messages, communications in a shared-memory machine are usually performed by

passing relatively short, fixed-size cache blocks. While a short block size reduces the

latency for a single transaction somewhat, and helps reduce false-sharing and superfluity

problems, transfering a large block of data using many transactions is rather inefficient,

because there is latency overhead due to issuing the supporting instructions and to pro-

cessing the cache coherence protocol for each transaction. Long-block memory access, if

supported by the system, may be used for reducing the latency overhead of transferring

large blocks of data. However, the programmer should avoid causing significant false-

sharing and superfluity problems.

3.3.4 Avoiding Network Contention

Issue 9 - Distributing the Communications in Space

Network contention occurs spatially when a processor/memory node is simultaneously

accessed by multiple processors. Therefore, to avoid network contention, it is better to dis-

tribute the communications in space.

Action 18 - Selective Communication for (I-9)

Depending on the machine and the degree of data-sharing, broadcasting can be more or

less efficient than point-to-point communication, where each processor communicates

individually with those processors that require its data (Figure 3-10). Point-to-point com-

munication may cause more overhead if a processor often needs to communicate with

1

2

3

4

1

2

3

4

1

2

3

4

Step 1 Step 2 Step 3

Figure 3-10: Example Pairwise Point-to-point Communication

94

many processors, but it may save bandwidth if there are only few processors that actually

need its data or if other processors need small distinct portions of its data. Compared to

broadcasting, pairwise point-to-point communication may perform better in many cases,

but requires more complicated programming.

Issue 10 - Distributing the Communications in Time

Network contention occurs temporally when the network bandwidth (or number of chan-

nels) is saturated. Therefore, to avoid network contention, it is better to distribute the

communications in time.

The shared-memory CRASH code examples CRASH-SP and CRASH-SD, shown in

Figure 1-4 and Figure 3-4, respectively, have distributed communication patterns, where

the remote loads and stores are interleaved with the computation. However, the message-

passing version (CRASH-MP) in Figure 3-5, and the privatized code in Figure 3-6 group

their communications near the beginning and end of parallel regions. Figure 3-11 shows a

typical communication pattern for a privatized shared-memory code. At the beginning of a

parallel region, every processor reads its required input data from other processors. At the

end of a parallel region, every processor updates its output data that will be used by other

processors in some later parallel region. Network contention may occur when the commu-

nication traffic is high during these input and output activities, while the network idles

during the computation-dominated time in the middle of a parallel region.

Figure 3-11: Communication Patterns in a Privatized Shared-Memory Code

barrier barrier

computation
read for the input
write for output
idle

p1
p2

p3

p4

95

Action 19 - Overdecomposition to Scramble the Execution for (I-10)

Overdecomposition may also serve as a method for interleaving communication with com-

putation. When the number of subdomains assigned to one processor is increased, the

degree of interleaving between communication and computation also increases. However,

this approach does introduce extra communication overhead due to the increased number

of messages and shorter message lengths, which may need to be traded-off against the

benefit of reducing network contentions.

3.3.5 Summary

In the previous chapter, we presented the trace-driven simulation techniques that we

developed for exploiting communications in a shared-memory code running on distributed

cache systems. We also showed how communication patterns can be extracted from a shared-

memory trace. Knowing the communication patterns, various techniques can be used for tun-

ing communication performance. These techniques are classified into three categories: reduc-

ing traffic, reducing latency, and avoiding network contention. We have discussed how and

when each technique can improve the performance.

Cache coherence protocols and data layout affect the communication patterns in subtle

ways without the user necessarily being able to discover that this is happening. Trace-driven

simulation exposes the communication patterns so that coherence communication and data

layout can be improved by employing a suitable coherence protocol, cache-control instructions,

and array grouping techniques. Trace-driven simulation also serves as a tool for evaluating

the communication performance of parallel machines, and determining the magnitude of this

problem.

Domain decomposition has played an important role in many performance-tuning tech-

niques. Domain decomposition can enhance data locality, which reduces communication traf-

fic. It also enables privatization, which may improve communication efficiency. A shared-

memory code can gradually be converted, or partially converted, into a message-passing code

by full or partial privatization, respectively. With explicit control of communication, overlap-

ping communication and computation can be achieved using asynchronous communication

directives.

96

For machines with hierarchical communication structures, e.g. KSR1/2 and Convex

Exemplar, the communication problem should be dealt with hierarchically by first reducing

the communication traffic in the level with the highest latency, and then considering the next

levels in turn.

We discussed the use of multithreading for hiding communication latencies, as well as the

use of overdecomposition for reducing network contention via increased interleaving of com-

munication with computation. Overdecomposition may serve as one convenient and effective

method for providing multiple threads to a multithreaded processor. More discussion about

overdecomposition and multithreading is found in Sections 3.6 and 3.7, where we discuss

these two approaches from the viewpoints of load balance, scheduling and synchronization.

3.4 Optimizing Processor Performance (Step 3)

Many sequential code optimization techniques have been developed, and discussion of

them is beyond the scope of this dissertation. Fortunately, a large portion of these techniques

have been implemented in many uniprocessor compilers, so users are less concerned with

them. Here, we address some of the issues that are specifically related to hand-tuning parallel

applications.

Issue 11 - Choosing a Compiler or Compiler Directive

To improve processor performance the use of an optimizing compiler is critical. Surpris-

ingly, some parallel compilers sacrifice serial optimization for parallel features. For exam-

ple, the HP Fortran sequential compiler consistently outperforms the Convex Fortran

parallel code compiler for the Exemplar in the quality of an individual processor’s

machine code in many of our test cases, despite the fact that they both generate codes for

the PA-RISC architecture. Some codes compiled by the KSR Fortran compiler actually

produce incorrect execution results when optimization is activated.

Action 20 - Properly Using Compilers or Compiler Directives for (I-11)

Our current solution is to use parallel compilers only where necessary, e.g. the Convex

Fortran compiler is used only for the routines with parallel directives, since a well-devel-

oped sequential compiler, such as HP Fortran, tends to deliver higher processor perfor-

mance. We also gradually increase the compiler optimization level and carefully monitor

both the delivered performance and the numerical results of the program.

97

Action 21 - Goal-Directed Tuning for Processor Performance for (I-11)

Hierarchical bound models could be used to estimate the lower bounds on a processor’s

run time [45][48]. In case the gap between two successive performance bounds in the hier-

archy is large, the developer can identify specific problems and try to close the gap by solv-

ing those problems. Profiling tools are useful to measure the actual execution time, count

cache misses, and identify the routines that consume the most execution time.

Issue 12 - Reducing the Cache Capacity Misses

For applications with large data sets, loop blocking techniques are commonly used to

reduce cache capacity misses. However, for CRASH, loop-blocking cannot be applied to

the main (iter) loop, because one phase needs to be completed before the other can start.

Some of the capacity misses can be eliminated, however, by reversing the index order in

the second phase, but this is unlikely to eliminate a significant fraction of the capacity

misses.

Capacity misses can greatly degrade the performance of applications that repeatedly iter-

ate through the problem domain within each phase. Since these capacity misses may be

difficult to eliminate, the memory system performance often becomes the bottleneck of the

application’s performance. As we mentioned in Section 2.2.1, the processor cache miss

ratio of CRASH-SP is about 0.25 on the HP/Convex SPP-1000, which shows that the pro-

cessor caches do not effectively cache the working set of CRASH-SP.

Action 22 - Cache Control Directives for (I-12)

Some systems allow the programmer to control how to cache the data in load and store

instructions. For example, cache-bypass loads may be used to selectively load data into

the cache in order to utilize the cache more efficiently. The PA 7200 processor in HP/Con-

vex SPP-1600 allows the programmer to specify loads with a “spatial-locality-only” hint to

indicate which data exhibit only spatial locality, so that the spatial-locality-only data will

be loaded to the assist cache, where they typically reside only briefly, instead of competing

with longer-lived temporal-locality data in the main cache [6].

Action 23 - Enhancing Spatial Locality by Array Grouping for (I-12)

Array grouping [45], is a software approach to enhancing the spatial locality in the mem-

ory access pattern, by selectively grouping the elements in multiple arrays that are

accessed within a short period. For example, in CRASH-SD, Position(i) and Posi-

98

tion(i+1) may not necessarily be accessed in consecutive iterations, but it is possible

that they are brought into the cache in one cache block that is replaced before the second

Position element is used. It is better to group Velocity(i) and Position(i) in the

same cache line, because they are always used together in the same iteration.

Array grouping can improve the efficiency of cache-memory traffic by reducing the super-

fluity in the cache blocks. It also reduce the chances of contention in the cache-memory

traffic because cache misses should occur less frequently, e.g. after Velocity(i) and

Position(i) are grouped, at most one cache miss results from accessing both of them.

Action 24 - Blocking Loops Using Overdecomposition for (I-12)

To apply the idea of loop blocking to an irregular application, reference [51] proposed

using the domain decomposition algorithm to produce subdomains within the subdomain

assigned to each processor and execute each small subdomain as a block (the symmetrical

overdecomposition mentioned in Section 3.2.2). Compared to the rectangular blocks that

result from conventional blocking of the iteration space, such subdomains may have bet-

ter data locality for irregular applications. This approach is consistent with the way that

we used domain decomposition initially for partitioning the problem in order to enhance

processor locality and reduce communications. It is usually convenient and efficient to

partition a domain into k*p subdomains and assign k blocks to each of the p processors.

Issue 13 - Reducing the Impact of Cache Misses

Inevitably, some cache misses will remain. It is thus important to reduce the impact of

these remaining cache misses.

Action 25 - Hiding Cache Miss Latency with Prefetch and Out-of-Order Execution for

(I-13)

Prefetch techniques, as mentioned in Section 3.3.3, can be applied to hide cache miss

latency. Yet, improper use of prefetch can generate superfluous cache-memory traffic that

slows down demand accesses to memory. However, in our example, the capacity miss

latency in CRASH can be greatly reduced by scheduling prefetch instructions to make

data available in the cache before it is actually needed by the processor. Executing

instructions out-of-order also helps hide memory access latency.

99

The PA7200 processor allows four data prefetch requests to be outstanding at one time

and supports a class of load instructions and a prefetch algorithm that can automatically

predict and prefetch for the next cache miss [6]. When our CPC machine was upgraded

from the PA7100 (HP/Convex SPP-1000) to the PA7200 (SPP-1600), the cache misses in

CRASH-SP where reduced considerably due to prefetching with this new class of load

instructions.

Action 26 - Hiding Memory Access Latency with Multithreading for (I-13)

Hiding cache miss latency has been one of the major goals for multithreaded processors, or

simultaneous multithreaded processors. When cache misses stall the execution of the run-

ning thread, the processor can quickly switch to work on a thread that is available for exe-

cution. While compilers may have difficulty decomposing sequential applications into

threads, threads can be made plentiful in a parallel application. As mentioned above,

overdecomposition is one convenient and efficient strategy to generate enough threads for

multithreading within each processor.

Issue 14 - Reducing Conflicts of Interest between Improving Processor Performance

and Communication Performance

Certain processor performance optimization techniques may conflict with techniques for

tuning communication performance, especially for shared-memory machines. For exam-

ple, one data layout may be preferred for computation, and another for communication

performance. Uniprocessor compilation techniques are often unaware of communications,

e.g. messages, cache line invalidations and prefetch instructions, which can change the

status of the caches.

Action 27 - Repeating Steps 2 and 3 for (I-14)

The optimization of overall uniprocessor computation and communication performance is

more difficult than computation performance alone and requires knowledge of communi-

cation patterns, which is why we readdress processor performance issues after tuning the

communication patterns. Given knowledge of the resulting communication pattern and

the data access pattern in the application, we may be able to optimize the overall commu-

nication and processor performance. So far such optimizations are highly case-sensitive,

and more research is needed to address this issue better in the future.

100

3.5 Balancing the Load for Single Phases (Step 4)

Load imbalance affects the degree of parallelism (i.e. efficiency) achieved in a parallel exe-

cution. The performance of a parallel region is limited by the processor with the most work,

and the degree of parallelism is imperfect if some processors are idle waiting for the slowest

processor. As mentioned above, sophisticated domain decomposition algorithms are often

used to balance the load for irregular applications. An optimal partitioning would be a parti-

tioning whose Tmax (defined for each parallel region in Section 2.2.3) summed over all parallel

regions is the smallest among all possible partitions.

For multiple-phase applications, if the node and edge weights are distributed differently

in different phases, finding a partition that balances the load for multiple phases is more diffi-

cult. We discuss the multiple phase load balancing problem in Section 3.7. In addition, if the

load distribution varies dynamically over the runtime, static load balancing techniques may

be ineffective. We discuss balancing the dynamic load in Section 3.8.

Issue 15 - Balancing a Nonuniformly Distributed Load

Since finding an optimal partitioning is an NP-complete problem for applications with a

nonuniform load distribution, most domain decomposition algorithms use heuristics to

partition the problem into reasonably load balanced subdomains and also attempt to min-

imize the communications between subdomains. Some decomposition algorithms have

been mentioned in Section 3.2, yet none of these algorithms consistently produces the best

partition. In addition to the selected decomposition algorithm, an accurate profile of the

load distribution (the node and edge weights provided as input to the decomposition algo-

rithm) determines the quality of a decomposition.

Action 28 - Profile-Driven Domain Decomposition for (I-15)

Tomko [2] has developed a profile-driven approach for determining the weights and

improving the quality of the resulting decomposition. Experiments have shown that the

profile-driven approach results in good load balance for single-phase irregular applica-

tions.

101

Action 29 - Self-Scheduling for (I-15)

Self-scheduling techniques [114][115] have been used to balance the load of a parallel

region. In these approaches, the parallel region contains extra tasks that can be dynami-

cally assigned to balance the load among the processors. However, such dynamic task

assignment shifts the locality of the data referenced by each processor, and disrupts the

working sets built up in their caches, thereby causing increased communication overhead

as the tasks migrate.

3.6 Reducing the Synchronization/Scheduling Overhead
(Step 5)

Synchronization/scheduling overhead reduces the efficiency of a parallel execution. Syn-

chronization overhead includes the latency for performing the synchronization operations

(synchronization costs) and the idle time that processors spend waiting at the synchronization

points (synchronization idle time). Scheduling overhead includes the latency for scheduling

tasks onto processors (scheduling costs) and the idle time that processors spend waiting to

begin their tasks (scheduling idle time). For loop-based applications, a large load imbalance

often results in long synchronization idle time before synchronizing with the most heavily

loaded processor. Inefficient scheduling causes unnecessary scheduling idle time due to

unnecessary blocking of task acquisition.

Issue 16 - Reducing the Impact of Load Imbalance

Barrier synchronization is often used to parallelize loops, especially in shared-memory

programs. When a program reaches a barrier synchronization point, it must wait there

until all the processors reach that point. A long wait time may occur when one processor

arrives much later than others due to load imbalance; the most heavily loaded processor

dominates the execution time. Such overhead may not be necessary in many cases. A

waiting processor could be allowed to cross the barrier if there are no data dependencies

between the tasks of the processors that have not yet reached the barrier and the next

waiting task of the processor.

102

Action 30 - Fuzzy Barriers for (I-16)

This overhead may be reduced with more efficient synchronization schemes and/or sched-

ules. Some schemes, such as fuzzy barriers, have been proposed [80][81] for relaxing bar-

rier synchronization by performing unrelated useful work on the processors which are

waiting for other processors to arrive at a synchronization point. However, since the use-

ful work must be independent of the work on any other processor prior to the fuzzy bar-

rier, it may be difficult for the compiler or the user to find suitable tasks that can be

efficiently inserted to relax the synchronization sufficiently.

Action 31 - Point-to-Point Synchronizations for (I-16)

Replacing barrier synchronization with point-to-point synchronization may reduce the

overhead in certain cases when the data dependencies between processor tasks are known

[58]. For example the pairwise point-to-point communication pattern shown in Figure 3-

10 can also be used for pairwise synchronization of the processors in a producer-consumer

fashion. Point-to-point synchronization requires extra programming effort because it is

generally difficult for a compiler to extract the data dependencies in sufficient detail.

The communication dependency graph produced by Domain decomposition algorithms can

be used to implement point-to-point synchronization. There is no need to synchronize two

processors if there is no communication between them. We will refer to this scheme as

communication-dependency-graph-directed (CDG-directed) synchronization. In case one

processor needs to communicate with only a few others that own its neighbor subdomains,

point-to-point synchronization may be more efficient than barrier synchronization.

We use Figure 3-12 to illustrate the CDG-directed synchronization. Figure 3-12(a) shows

a two phase parallel execution with a different load distribution for each phase. Note that

the two phases combined show perfect load balance, although neither phase is individu-

ally balanced. Figure 3-12(b) shows simple CDG-directed synchronization with 4 subdo-

mains, whose dependency graph is shown in Figure 3-3(c). Processor 3 can begin the

second phase of its computation as soon as processor 2 and processor 4 have both finished

their first phase computation. However, point-to-point synchronization cannot effectively

reduce the synchronization overhead in this example because processor 4 cannot begin its

second phase until processor 1 completes its first phase, and this dependence serializes

the execution of the two longest tasks.

103

Action 32 - Self-scheduling of Overdecomposed Subdomains for (I-16)

The communication dependence graph (CDG) can be also be used with overdecomposition

to implement a variant of the self-scheduling schemes, hereafter referred to as CDG-

directed overdecomposed self-scheduling (CDG-OSS), by imposing a set of scheduling con-

straints that are derived from the CDG. This scheme is described as follows:

• To eliminate or reduce the task (subdomain) migration caused by self-scheduling, all

or most of the overdecomposed subdomains must be bound to particular processors. As

shown in Figure 3-13, for solving the example problem of Figure 3-3 with p=4 proces-

P1 P2 P3 P4

phase 1

phase 2

barrier

barrier

barrier

P1 P4

phase 1

phase 2

P1 P2 P3 P4

phase 1

phase 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

6

5

7

8

10

9

11

12

16

13

14

15

1
6 10 13

1497

(a) barrier synchronization (b) CDG-directed synchronization (c) CDG-directed synchronization
with overdecomposed domain

Figure 3-12: Barrier, CDG-directed Synchronization,
and the Use of Overdecomposition

P2 P3

task in phase 1 task in phase 2 idle

(a) communication dependency

Figure 3-13: Overdecomposition and Dependency Table

(b) dividing the subdomains
graph for 16 subdomains

group 1

group 2

group 4

group 3

1

2
3

4

5

6
7

8
9

10

11

12
13

14
15

16 1<-2,3
2<-1,4
3<-1,4,13,14
4<-2,3,5,8
5<-4,6,8
6<-5,7,8
7<-6,8,10
8<-4,5,6,8
....

(c) dependency table
into 4 groups

104

sors, the domain is overdecomposed into p groups of k=4 subdomains, and each group

of k subdomains is assigned to a processor.

• As in a conventional self-scheduling scheme, each processor has an assigned pool of

tasks waiting to be scheduled on the processors. Instead of using a barrier, CDG-

directed self-scheduling performs point-to-point synchronization to decide if a task

can be executed. If a task does not need communication from any unfinished task, it is

ready to be scheduled on its processor; otherwise, it is not ready to be scheduled at

that moment. The data dependencies between subdomains across the synchronization

are listed in a dependency table (Figure 3-13(c)), e.g. subdomain 1 has depends on

data from subdomain 2 and 3. Whenever a processor finishes one of its tasks, it finds a

new ready task in its task pool and begins its execution. If no task remaining in its

pool are ready, it waits.

• When a processor finishes all its tasks in the computation phase, CDG-OSS deter-

mines, by checking the dependency table, if the computation for any of its subdomains

in the next phase can be scheduled. Because the processor has freedom to choose any

unblocked task from among its k subdomains, its wait time may be reduced.

Figure 3-12(c) shows how overdecomposition can reduce the synchronization/scheduling

overhead. When the first phase computation is finished on processor 4, an unblocked sub-

domain is scheduled to be executed on processor 4 for its second phase. At the moment,

subdomains 13, 14, and 15 are blocked because they depend on unfinished phase 1 compu-

tations, so the unblocked subdomain, 16, is scheduled on processor 4. When subdomain 16

finishes its second phase, subdomain 13 is ready for execution. In this example, the CDG-

OSS eliminates the overhead due to the load imbalance in these two phases.

A special form of overdecomposition assigns one subdomain to each processor and then

divides the elements in each subdomain into two groups: internal and boundary [51].

Since the computation for the internal elements in one phase depends on other processors

only for the boundary elements computed in the previous phase, the internal computa-

tions can be executed without communicating/synchronizing with any other processors.

This overdecomposition strategy may be a good choice if it provides a number of internal

elements in the subdomains that is sufficient to provide enough useful computation to sig-

nificantly reduce the wait time for boundary element values.

105

Issue 17 - Reducing the Overall Scheduling/Synchronization Overhead

While various scheduling/synchronization schemes can be used to reduce the impact of

load imbalance, the costs for these schemes should also be considered. For example, the

cost of fine-grain self-scheduling may not be acceptable in message-passing applications.

Point-to-point synchronization can cause more overhead than barrier synchronization if

one processor needs to synchronize with too many other processors. Therefore, the depen-

dency graph, the load imbalance, and the cost of synchronization operations should be con-

sidered for determining which scheduling/synchronization scheme to use.

3.7 Balancing the Combined Load for Multiple Phases
(Step 6)

Issue 18 - Balancing the Load for a Multiphase Program

Different phases may have different sets of weights for the nodes and edges of the problem

domain. Load balancing for multiple phases is more difficult than balancing one phase

only.

Action 33 - Balancing the Most Critical Phase for (I-18)

One common solution is to balance the most critical phase with one domain decomposition

and let the other phases simply use the resulting decomposition. This solution may not

work well for programs with multiple critical phases.

Action 34 - Multiple Domain Decompositions for (I-18)

Another common solution for load balancing a multiple phase application is, to perform a

separate domain decomposition for each phase of the program and redistribute data

between phases. However, this redistribution can be costly since there may be little local-

ity between consecutive phases.

Action 35 - Multiple-Weight Domain Decomposition Algorithms for (I-18)

Finding one partition that balances each of several phases has been viewed as a difficult

problem. A heuristic algorithm, called a dual-weight algorithm [2] has been proposed to

load balance two phases with one partition that approximately equally divides each of two

sets of weights with a greedy bisection algorithm.

106

Action 36 - Fusing the Phases and Balancing the Total Load for (I-18)

As shown in Section 3.6, the use of CDG-OSS allows the system to tolerate some degree of

temporal load imbalance in each phase. In Figure 3-12(c), the CDG-directed synchroniza-

tion/overdecomposition scheme has virtually fused the two phases. Instead of balancing

the load for each phase, balancing the total load for the effectively fused phases is much

easier and may lead to a better overall solution.

Deciding which actions to choose for (I-18)

Action 33 (Balancing the Most Critical Phase) is the easiest solution, but is also least effec-

tive among these four actions. Action 34 (Multiple Domain Decomposition) should be used

only if the data redistribution overhead due to subdomain migration is justified with respect

to the improved load balance. Action 35 (Multiple-Weight Domain Decomposition Algorithms)

can often effectively balance multiple phases with one domain decomposition, which elimi-

nates the need for redistributing data. Action 36 (Fusing the Phases and Balancing the Total

Load) can be used alone or in conjunction with the other approaches to help to tolerate the

load imbalance in individual phases.

3.8 Balancing Dynamic Load (Step 7)

Issue 19 - Reducing the Dynamic Load Imbalance

Some applications have dynamic runtime behavior that changes the load distribution over

time. An initially well-balanced data decomposition may become unbalanced some time later.

For example, CRASH exhibits such behavior as the vehicle is progressively distorted. To bal-

ance the dynamic load, we may need to find a way to re-balance the load whenever it has

changed significantly.

Action 37 - Dynamically Redecomposing the Domain for (I-19)

A common solution is to dynamically redecompose the domain and redistribute the data

as the load changes. Some implementations perform a completely new decomposition

(Action 37a), while others simply adjust the boundaries between subdomains (Action 37b).

The performance can be improved if the overhead for domain re-decomposition and data

107

redistribution is smaller than the saved execution time. Some solutions require constantly

monitoring the load on every processor, which may cause some modest extra overhead and

require some modest hardware support.

Action 38 - Dynamic/Self-Scheduling for (I-19)

Dynamic or self-scheduling schemes may also be used to balance load dynamically with-

out re-decomposing the domain. While these schemes save the cost for redecomposition,

the data redistribution cost for task migration can be significant.

Action 39 - Multiple-Weight Domain Decomposition for (I-19)

Dynamic load distribution within some applications can be predicted from previous expe-

rience. Many engineering design applications are performed many times for slightly dif-

ferent data sets, where the load behavior may be predictable fairly well. If the load does

not change frequently and dramatically, the load distribution function can be approxi-

mated with a few representative sets of weights, which represent the load distribution at

certain stages. As a phase that is executed repeatedly over the course of run, if the behav-

ior of that phase varies dynamically, it may be convenient to group the instances of that

phase into stages where the instances within a stage have fairly similar behavior.

Figure 3-14 shows an example of such an approximation for a domain consisting of four

elements: 1, 2, 3, and 4, where the workload associated with each element changes over

time, as shown in Figure 3-14(a). Consequently, the workload distribution over the

domain also changes over time. In Figure 3-14(b), we divide the execution into four stages,

and approximate the workload distribution in each stage by choosing a representative

workload value for each element.

This concept of multiple stages is thus similar to the concept of multiple phases. Thus,

some of the techniques that balance the load for multiple phases may be able to be suc-

cessfully applied to solve this multiple stage balancing problem. For example, the dual

weight domain decomposition algorithm developed by Tomko [2] could be extended for

finding a good partitioning that balances multiple stages.

108

Issue 20 - Tolerating the Impact of Dynamic Load Imbalance

As mentioned in (I-16), load imbalance impacts performance via synchronization/schedul-

ing wait. As the load behavior changes over time, the load imbalance may change dynam-

ically. In some cases, load imbalances that occur in different iterations may cancel each

other, if the load imbalance can be tolerated temporally.

workload workload

time time

timetime

element 1

element 2

element 1

element 2

Figure 3-14: Approximating the Dynamic Load in Stages.

(a) different dynamic workload behavior
for 4 elements

(b) approximating the dynamic workload
with 4 stages, yielding 4 sets of weights

time time

timetime

element 3

element 4

element 3

element 4

stage 1 stage 2 stage 3 stage 4

109

Action 40 - Relaxed Synchronizations for (I-20)

The relaxed synchronization schemes we mentioned earlier, Action 30 (Fuzzy Barriers),

Action 31 (Point-to-Point Synchronizations), Action 32 (Self-scheduling of Overdecomposed

Subdomains), may also be used to tolerate highly unpredictable loads, but they may not

work as well for this problem because these schemes cannot tolerate a large temporal load

imbalance that may be accumulated in one stage after some number of iterations.

The load distribution function(s) in a dynamic application can change infrequently or fre-

quently, gradually or significantly, and predictably or unpredictably. The user needs to under-

stand the nature of the dynamic behavior of the application before applying the solutions.

Possible actions for solving a specific class of dynamic applications are summarized in Table

3-1 and discussed below. Note that runtime performance monitoring is necessary if the way in

which load distribution changes cannot be discovered at compile or load time.

If changes of the load distribution are predictable, dynamic domain decomposition may be

applied periodically, depending on the frequency and the magnitude of the change. If the load

distribution changes frequently but gradually, it may be possible to find some heuristics for

adjusting the domain decomposition appropriately, e.g. by shifting subdomain boundaries, or

domain redecomposition can be performed when the load imbalance exceeds a certain limit.

However, if the load distribution changes frequently and significantly, then dynamic decom-

.

Predictable? Frequently? Significantly?
Primary/
Effective
Actions

Secondary
Actions

Yes No No Action 37a
Action 37b
Action 39

Action 38
Action 40

Yes No Yes Action 37a
Action 39

Action 38
Action 40

Yes Yes No Action 37b Action 38
Action 40

Yes Yes Yes N/A Action 37a
Action 38
Action 40

No N/A N/A N/A Action 38
Action 40

Table 3-1: Comparison of Dynamic Load Balancing Techniques

110

position may need to be applied whenever the load distribution changes, although this can

cause unacceptable decomposition and data redistribution costs. If the load distribution is

unpredictable (nondeterministic), then dynamic decomposition may not improve the load bal-

ance, and dynamic self-scheduling or simply suffering the imbalance may be the only ways of

dealing with this situation.

In most cases, dynamic scheduling of fine-grain parallel tasks may help balance the load

in a parallel region at the costs of scheduling and data redistribution. Relaxed synchroniza-

tion can be used for tolerating a certain degree of temporal load imbalance, hoping that the

imbalance can eventually be compensated for either naturally or with the help of dynamic

load balancing techniques. Data redistribution costs can be modeled or measured to deter-

mine the benefit of applying the dynamic load balancing techniques. It is also possible that

redistribution costs can be hidden by overlapping data redistribution with computation.

3.9 Conclusion

We have discussed various performance-tuning actions for solving common performance

problems in irregular applications, including existing techniques and techniques derived from

our work. More importantly, we provide a unified methodology to classify and utilize these

performance-tuning techniques. Through the classification of performance issues, correlations

among the tuning actions become more clarified, which is extremely important for optimizing

the overall performance. The performance issues and their most appropriate tuning actions,

as well as the effects of the actions discussed in this chapter are summarized at the end of this

chapter in Table 3-2. In conjunction with the step-by-step performance tuning scheme

described in Figure 3-2, the issues in Table 3-2 are addressed for resolution in our perfor-

mance tuning methodology. While this is still preliminary work, we believe that, after more

experience is gained, better resolution of these issues, supported by more performance tuning

techniques, will find their way into future compilers and be applied in a manner such as we

have articulated here.

Domain decomposition is critically involved in the parallelization of irregular applica-

tions, as well as many of the solutions for each of those performance issues. We provide a con-

sistent way of using domain decomposition to solve individual problems, for example,

parallelizing programs, organizing communications, blocking loops, balancing the load, and

111

implementing point-to-point synchronization. Some of the techniques, such as multithread-

ing, prefetching, and point-to-point synchronization, can be further enhanced by overdecom-

position. The CDG-directed overdecomposed self-scheduling scheme can tolerate some

temporal load imbalance so that, instead of balancing the load for each phase, the total load

can be balanced for multiple phase applications. Our approach provides a unified methodol-

ogy for integrating various performance-tuning techniques with domain decomposition and

aplying them selectively in a well-ordered sequence.

On a shared-memory machine, communications and the memory system are closely cou-

pled, which provides both advantages and disadvantages for the programmers of these

machines. While shared-memory machines are more powerful (and have more costly hard-

ware) than message-passing machines, and although creating a functional code for a shared-

memory machine is easier than orchestrating a functional message-passing code, tuning the

code for efficiency on a distributed shared-memory machine is a far more sophisticated and

subtle process than the corresponding tuning process for a message-passing code. The issues

and techniques have been discussed in Section 3.3 and summarized in Section 3.3.5.

For improving the processor performance, our discussion in Section 3.4 focuses on issues

that concern the parallel execution of irregular applications. As the speed gap between the

memory and the processor continues to increase today, the data supply problem should

receive more attention. For large irregular applications whose working set exceed the cache

capacity, efficiently caching the data, e.g. (A-22)(A-23)(A-24), and hiding the memory latency,

e.g.(A-25)(A-26), can be vital to the processor performance. The application of these tech-

niques may need to be considered in conjunction with the communication pattern for improv-

ing the overall communication and computation performance.

Sections 3.5 to 3.8 collectively address the issue of improving the degree of task-level par-

allelism. Although the load balance, the schedule, and the synchronization in an application

are often programmed and/or perceived differently by the programmer, they are all involved

in this complex issue. Below we summarize the way we approach this problem:

112

• Reducing synchronization/scheduling overhead for single phase applications

For applications whose performance is dominated by a single program phase, static sched-

uling and static load balancing, e.g. (A-1)(A-28)(A-33), are usually used when the load dis-

tribution does not vary much during the runtime. The quality of domain decomposition

determines the load imbalance in the parallel region. In this case, relaxed synchronization

e.g. (A-30)(A-31), may not be useful since the performance is dominated by the heaviest

load, unless dynamic scheduling or dynamic decomposition is used to change the load on

processors. However, self-scheduling (A-29), multiple domain decomposition (A-34), and

dynamic decomposition (A-37) incur extra scheduling/decomposition costs and data redis-

tribution costs, which offset the performance gained from achieving a balanced load, or

even degrades the overall performance.

• Reducing synchronization/scheduling overhead for multiple phase applications

For applications with multiple program phases and static load distribution, static load bal-

ancing techniques with a single domain decomposition (A-33)(A-35) may or may not be able

to balance the load for multiple phases simultaneously. As in the case for single phase

applications, dynamic scheduling/decomposition (A-29)(A-34) requires extra costs for

scheduling/decomposition and data redistribution. Fuzzy barriers (A-30) may be effective,

but will not be able to relax the barrier unless a sufficient amount of independent computa-

tion can be found.

We use point-to-point synchronization (A-31) as a means of virtually fusing regions (A-36),

if the dependence information between the phases can be determined. However, point-to-

point synchronization alone may not improve the performance, as we have shown in

Figure 3-12(b). In such cases, we employ dynamic scheduling to schedule the overdecom-

posed subdomains assigned to each processor. In (A-32), we have discussed how combining

overdecomposition, localized self-scheduling, and point-to-point synchronization can

reduce the synchronization/scheduling overhead more effectively than point-to-point syn-

chronization alone.

• Reducing synchronization/scheduling overhead for dynamic applications

Tuning dynamic applications is highly case-dependent and requires extensive information

about the application performance. For predictable load changes, optimizing the decompo-

sition, e.g. (A-37) or (A-39), may effectively balance the load, in conjunction with the use of

113

self-scheduling (A-38) and/or relaxed synchronization (A-40). For highly dynamic or unpre-

dictable load changes that are difficult to track, (A-38) and (A-40) may be the only effective

ways to reduce the overhead.

There are several issues that we have not fully addressed regarding this combined

scheme. First, we have not characterized the specific strategies for domain decomposition and

overdecomposition. For example, dynamic scheduling and point-to-point synchronization are

more efficient if each subdomain depends on only a few other subdomains. Second, we have

not measured the performance gain versus the synchronization/scheduling costs. The syn-

chronization/scheduling costs can offset the performance gain if the domain is excessively

overdecomposed and/or the degree of dependence is high for the average subdomain. Third,

we have not characterized how large a temporal load imbalance this scheme can actually tol-

erate. The tolerance of temporal load imbalance can be critical to the strategies of domain

decomposition and overdecomposition for balancing multi-phase applications. These are

issues that need to be addressed in the future.

114

Tuning Step
Associated

Performance
Issues

Tuning Action
Positive

for
Solving
Issues

Negativ
e for

Solving
Issues

Other
Related
Issues

Partitioning the
Problem (Step 1)

(I-1) Partitioning an
Irregular Domain

(A-1) Applying a Proper Domain
Decomposition Algorithm for (I-1) (1) -

(3)(6)
(15)(18)

(19)

Tuning the Com-
munication Perfor-

mance (Step 2)

(I-2) Exploiting Pro-
cessor Locality

(A-2) Proper Utilization of Distrib-
uted Caches for (I-2) (2) - (4)(5)(12)

(14)

(A-3) Minimizing Subdomain
Migration for (I-2) (2) - (1)(4)(12)

(15)(18)(19)

(I-3) Minimizing
Interprocessor Data

Dependence

(A-4) Minimizing the Weight of Cut
Edges in Domain Decomposition

for (I-3)
(3) - (1)(6)(15)

(18)(19)

(I-4) Reducing Super-
fluity (A-5) Array Grouping for (I-4) (4) - (5)(12)

(I-5) Reducing
Unnecessary Coher-

ence Operations

(A-6) Privatizing Local Data
Accesses for (I-5) (4)(5) (12) (2)(14)

(A-7) Optimizing the Cache Coher-
ence Protocol for (I-5) (5) - (2)(4)(12)

(A-8) Cache-Control Directives for
(I-5) (5) - (2)(4)(12)

(A-9) Relaxed Consistency Mem-
ory Models for (I-5) (5) -

(2)(4)(12)

(A-10) Message-Passing Directives
for (I-5) (5) - (4)(7)(9)

(I-6) Reducing the
Communication Dis-

tance

(A-11) Hierarchical Partitioning for
(I-6) (6) -

(1)(2)(3)
(15)(18)

(19)

(A-12) Optimizing the Subdomain-
Processor Mapping for (I-6) (6) - (15)(16)(18)

(19)(20)

(I-7) Hiding the Com-
munication Latency

(A-13) Prefetch, Update, and Out-
of-order Execution for (I-7) (7) - (12)(14)

(A-14) Asynchronous Communica-
tion via Messages for (I-7) (7) - (4)(5)(9)(14

)

(A-15) Multithreading for (I-7) (7)(13) - (9)(12)(14)

(I-8) Reducing the
Number of Commu-
nication Transac-

tions

(A-16) Grouping Messages for (I-8) (8) (9) (14)

(A-17) Using Long-Block Memory
Access for (I-8) (8) (4)(5)(9) (14)

(I-9) Distributing the
Communications in

Space
(A-18) Selective Communication

for (I-9) (8) - (14)

(I-10) Distributing
the Communications

in Time

(A-19) Overdecomposition to
Scramble the Execution for (I-10) (9) - (14)

Table 3-2: Performance Tuning Steps, Issues, Actions and
the Effects of Actions. (1 of 2)

115

Optimizing Proces-
sor Performance

(Step 3)

(I-11) Choosing a
Compiler or Compiler

Directive

(A-20) Properly Using Compilers or
Compiler Directives for (I-11) (11) - -

(A-21) Goal-Directed Tuning for
Processor Performance for (I-11) (11) - -

(I-12) Reducing the
Cache Capacity

Misses

(A-22) Cache Control Directives for
(I-12) (12) (2) (4)(14)

(A-23) Enhancing Spatial Locality
by Array Grouping for (I-12) (12) (2) (4)(14)

(A-24) Blocking Loops Using Over-
decomposition for (I-12) (12) - (14)

(I-13) Reducing the
Impact of Cache

Misses

(A-25) Hiding Cache Miss Latency
with Prefetch and Out-of-Order

Execution for (I-13)
(13) - (7)

(A-26) Hiding Memory Access
Latency with Multithreading for (I-

13)
(13) - (7)

(I-14) Reducing Con-
flicts of Interest

between Improving
Processor Perfor-

mance and Commu-
nication Performance

(A-27) Repeating Steps 2 and 3 for
(I-14) (14) - (2)-(13)

Balancing the
Load for Single
Phases (Step 4)

(I-15) Balancing a
Nonuniformly Dis-

tributed Load

(A-28) Profile-Driven Domain
Decomposition for (I-15) (15) - (1)(3)

(18)(19)

(A-29) Self-Scheduling for (I-15)
(15)(16)(18

)
(19)(20)

(2)(17) -

Reducing the Syn-
chronization/

Scheduling Over-
head (Step 5)

(I-16) Reducing the
Impact of Load

Imbalance

(A-30) Fuzzy Barriers for (I-16) (16)(18)
(19)(20) - (17)

(A-31) Point-to-Point Synchroniza-
tions for (I-16)

(16)(18)
(19)(20) - (17)

(A-32) Self-scheduling of Overde-
composed Subdomains for (I-16) (2)(16) - (16)(17)

(18)(19)

(I-17) Reducing the
Overall Scheduling/

Synchronization
Overhead

- - - -

Balancing the
Combined Load for

Multiple Phases
(Step 6)

(I-18) Balancing the
Load for a Mul-

tiphase Program

(A-33) Balancing the Most Critical
Phase for (I-18) (18) (3)(15)

(A-34) Multiple Domain Decompo-
sitions for (I-18) (18) - (3)

(A-35) Multiple-Weight Domain
Decomposition Algorithms for (I-

18)
(2)(18) - (3)(15)(19)

(A-36) Fusing the Phases and Bal-
ancing the Total Load for (I-18) (16)(18) - (15)(20)

Balancing
Dynamic Load

(Step 7)

(I-19) Reducing the
Dynamic Load Imbal-

ance

(A-37) Dynamically Redecompos-
ing the Domain for (I-19) (19)(20) (2) (3)(14)

(A-38) Dynamic/Self-Scheduling for
(I-19)

(16)(19)
(20) (2) (3)(15)

(17)(18)

(A-39) Multiple-Weight Domain
Decomposition for (I-19) (2)(19) -

(3)(15)(19)

(I-20) Tolerating the
Impact of Dynamic

Load Imbalance
(A-40) Relaxed Synchronizations

for (I-20) (16)(19) - (14)(17)(18)

Tuning Step
Associated

Performance
Issues

Tuning Action
Positive

for
Solving
Issues

Negativ
e for

Solving
Issues

Other
Related
Issues

Table 3-2: Performance Tuning Steps, Issues, Actions and
the Effects of Actions. (2 of 2)

116

CHAPTER 4. HIERARCHICAL PERFORMANCE BOUNDS

AND GOAL-DIRECTED PERFORMANCE TUNING

Hierarchical machine-application bounds models [39][40][42][44][45][46][47][49], collec-

tively called the MACS bounds hierarchy, have been used to characterize application perfor-

mance by exposing performance gaps between the different levels of the hierarchy. The MACS

bounds hierarchy successively includes performance constraints of Machine peak perfor-

mance, an Application’s essential computation workload, the additional workload in the Com-

piler generated code, and instruction Scheduling constraints caused by data, control, and

structural hazards. Modeling methodologies and specific models have been developed and pre-

sented for evaluating processor performance a variety of systems. The MACS bounds hierar-

chy has been extended to characterize application performance on the KSR1 shared-memory

parallel computer. The extended hierarchy, called MACS12*B [48], addresses cache misses in

the shared-memory system and the runtime overhead due to load imbalance.

Several important performance issues remained unaddressed in the previous work,

namely, degree of parallelization, multiple program regions with different workload distribu-

tions, dynamic load imbalance, and I/O and operating system interference. For irregular

applications, I/O-intensive applications, or interactive applications, these unaddressed issues

can greatly affect the performance. By adapting the existing hierarchies and incorporating

new bounds as described in this chapter, the performance bounds methodology now has a

more complete hierarchy for characterizing a broader range of applications on parallel

machines.

With the new bounds hierarchy and our new automatic bounds generation tool, CXbound,

complicated application performance profiles on the HP/Convex Exemplar can be converted

into a simple set of performance bounds, which provide more effective high level performance

visualization and insights into program behavior.

117

In this chapter, we explain the hierarchical machine-application-performance bounds

models we have developed for characterizing the performance gaps between ideal and deliv-

ered performance. The previously developed bounds models are introduced in Section 4.1. Our

recent extension of the bounds models and our goal-directed performance tuning scheme for

parallel environments are described in Section 4.2. In Section 4.3, we discuss the acquisition

of the performance bounds within CXbound. In Section 4.4, we use CXbound in several case

studies and demonstrate the effectiveness of hierarchical bounds analysis. Finally, in Section

4.5, we review the development of the hierarchical bounds methodology and discuss possible

future research topics in this area.

4.1 Introduction

A performance bound is an upper bound on the best achievable performance. In previous

performance bounds work, performance has been measured by Cycles Per Instruction (CPI),

Cycles Per Floating-point operation (CPF) or Cycles Per Loop iteration (CPL). In this disserta-

tion, we extend the scope of performance bounds to assess the performance of entire applica-

tions. Since the goal of performance tuning is to reduce application runtime, we believe that

performance is best measured by the total runtime. CPI, CPF, or CPL may easily be derived

from runtime metrics of applications or regions of applications and provide meaningful com-

parisons when the number of instructions, number of floating-point operations, or the number

of iterations of the target application remains constant during performance tuning. Note that

an upper bound on performance is a lower bound on the runtime, CPI, CPF, or CPL.

4.1.1 The MACS Bounds Hierarchy

The MACS machine-application performance bound methodology provides a series of

upper bounds on the best achievable performance (equivalently, lower bounds on the runtime)

and has been used for a variety of loop-dominated applications on vector, superscalar and

other architectures [39][40][42][44][45][46][47][49]. The hierarchy of bounds equations is

based on the peak performance of a Machine of interest (M), the Machine and a high level

Application code of interest (MA), the Computer-generated workload (MAC), and the actual

compiler-generated Schedule for this workload (MACS), respectively. MACS Bounds equa-

tions for IBM RS/6000 [46], Astronautics ZS-1 [46], Convex C-240 [47], KSR1 [42][44], IBM

SP2 [15], and other systems, have been developed.

118

Use of the hierarchical bounds analysis for performance tuning on scientific code has been

presented in [44][45][48][49]. Tools that automate the acquisition of the performance bounds

were developed for the KSR1 [44][116]. The MACS bounds hierarchy is generally described

below in Sections 4.1.1.1 through 4.1.1.4.

4.1.1.1 Machine Peak Performance: M Bound

The Machine (M) bound is defined as the minimum run time if the application workload

were executed at the peak rate. The minimum workload required by the application is indi-

cated by the total number of operations observed from the high-level source code of the appli-

cation. The machine peak performance is specified by the maximum number of operations

that can be executed by the machine per second. The M bound (in seconds) can be computed

by

M Bound = (Total Number of Operations in Source Code)/(Machine Peak Performance). (EQ 10)

4.1.1.2 Application Workload: MA Bound

The MA bound considers the fact that an application usually has various types of opera-

tions that have different execution times and use different processor resources (functional

units). Functional units are selected for evaluation if they are deemed likely to be a perfor-

mance bottleneck in some common situations. The MA bound of an application counts the

operations for each selected function unit from the high level code of the application, the utili-

zation of each functional unit is calculated, and the MA bound is determined by the execution

time of the most heavily utilized functional unit. The MA bound thus assumes that no data or

control dependencies exist in the code and that any operation can be scheduled at any time

during the execution, so that the function unit(s) with heaviest workload is fully utilized.

4.1.1.3 Compilation: MAC Bound

The MAC bound is similar to MA, except that it is computed using the actual operations

produced by the compiler, rather than only the operations counted from the high level code.

Thus MAC still assumes an ideal schedule, but does account for redundant and unnecessary

operations inserted by the compiler as well as those that might be necessary to add to the MA

119

operations counts in order to orchestrate a particular machine code. MAC thus adds one more

constraint to the model by using an actual rather than an idealized workload.

4.1.1.4 Instruction Scheduling: MACS Bound

The MACS bound, in addition to using the actual workload, adds another constraint by

using the actual schedule rather than an ideal schedule. The data and control dependencies

limit the number of valid instruction schedules and may result in pipeline stalls (bubbles) in

the functional units. A valid instruction schedule can require more time to execute than the

idealized schedules we assumed in the M, MA, and MAC bounds.

4.1.2 The MACS12*B Bounds Hierarchy

In his Ph.D dissertation [48], Eric L. Boyd extended the MACS bounds hierarchy to char-

acterize application performance in parallel environments, by using the KSR1 parallel com-

puter as a case study. Boyd’s MACS12*B bounds hierarchy subdivides the gap between the

actual runtime and the MACS bound with intermediate bounds that model data subcache

misses (MACS1), local cache misses (i.e. interprocessor communication) (MACS12), inserted

instructions1 (MACS12*), and the load imbalance (MACS12*B).

The calculation of MACS1, MACS12, and MACS12* relies heavily on data gathered from

KSR’s performance analyzer, PMON. The number of data subcache misses, local cache

misses, and CEU_STALL time reported by PMON are used to compute the MACS bound and

to obtain the MACS1, MACS12, and MACS12* bounds. Instead of generating a different

bounds hierarchy for each processor, the bounds hierarchy from M through MACS12* is cal-

culated for the “average” processor, assuming that the workload is perfectly balanced. The

MACS12*B bound adds the load imbalance effect, by using the processor with the largest

runtime to bound the performance of an application.

The MACS12*B bounds hierarchy has proved to be effective for performance characteriza-

tion of certain scientific applications, e.g. some of the NAS Parallel Benchmarks [62].

1. In addition to the constraints that are modeled in the MACS12 bound, there are a variety of reasons that may
cause extra instructions to be inserted into the instruction stream for such purposes as timer interrupts and I/O ser-
vices. Refer to [48] for more details.

120

4.1.3 Performance Gaps and Goal-Directed Tuning

In ascending through the bounds hierarchy from the M bound, the model becomes increas-

ingly constrained as it moves in several steps from potentially deliverable toward actually

delivered performance. Each gap between successive performance bounds exposes and quanti-

fies the performance impact of specific runtime constraints, and collectively these gaps iden-

tify the bottlenecks in application performance. Performance tuning actions with the potential

greatest performance gains can be selected according to which gaps are the largest, and their

underlying causes. This approach is referred to as goal-directed performance tuning or goal-

directed compilation [45][48], which can be used to assist hand-tuning, or implemented within

a goal-directed compiler for general use.

4.2 Goal-Directed Tuning for Parallel Applications

4.2.1 A New Performance Bounds Hierarchy

Several important performance issues remained unaddressed in the previous work,

namely, degree of parallelization, multiple program regions with different workload distribu-

tions, dynamic load imbalance, and I/O and operating system interference. For irregular

applications, I/O-intensive applications, or interactive applications, these unaddressed issues

can greatly affect the performance. By adapting the existing hierarchies and incorporating

new bounds as described in this chapter, the performance bounds methodology now has a

more complete hierarchy for characterizing a broader range of applications on parallel

machines.

Our new performance bounds hierarchy, as shown in Figure 4-1, successively includes

major constraints that often limit the delivered performance of parallel applications. These

constraints are considered in the order of: machine peak performance (M bound), mismatched

application workload (MA bound), compiler-inserted operations (MAC bound), compiler-gener-

ated instruction schedule (MACS bound), finite cache effect (MACS$ or I bound), partial appli-

cation parallelization (IP bound), communication overhead (IPC bound), I/O and operating

system interference (IPCO bound), overall load imbalance (IPCOL bound), multiple phase load

imbalance (IPCOLM bound), dynamic load imbalance (IPCOLMD bound). We have found this

121

ordering to be intuitive and useful in aiding the performance tuning effort; however, we do not

claim that it is unique or optimal. Other variations or refinements could be considered.

The uniprocessor bounds, consisting of M, MA, MAC, MACS, and MACS$, are carried over

from previous work [44][45][48] and are used to explain the performance within each proces-

sor (uniprocessor performance). The MACS$ bound is similar to the MACS1 bound in the

MACS12*B hierarchy (see Section 4.1.2), but there is a subtle difference between them.

Unlike the MACS1 bound, coherence misses are regarded as a form of interprocessor commu-

nication and are distinguished from the other types of cache misses (compulsory, capacity,

Figure 4-1: Performance Constraints and the Performance Bounds Hierarchy.

I-Partial parallelization (IP) bound

Machine (M) bound

M-Application (MA) bound

MA-Compiler (MAC) bound

MAC-Schedule (MACS) bound

MACS-Cache (MACS$) bound

IPC-Operating system (IPCO) bound

IPCO-Load imbalance (IPCOL) bound

IPCOL-Multiphase (IPCOLM) bound

Actual run time

Dynamic load imbalance

Unmodeled effects

Multiphase load imbalance

Overall load imbalance

Interprocessor communication

Partial parallelization

Finite cache effect

Data dependency, branches,

Compiler-inserted operations

pipeline bubbles

Mismatched application workload

System constraints Gaps

Machine peak performance

Execution time

IPCOLM-Dynamic (IPCOLMD) bound

Ideal-parallelization (I) bound

U
niprocessor bounds

P
arallel bounds

IP-Communication (IPC) bound

I/O, Operating System Events

M

A

C

S

$

P

C′

O

L

M′

D

X

122

mapping, and replacement) which are included in the MACS$ bound for characterizing the

finite cache effect.

Except for the IPCO bound, the parallel bounds address issues beyond the context of a

uniprocessor. The degree of parallelization can limit the scalability of application performance

on a parallel machine. Interprocessor communication, I/O and OS events add more processor

workload. Although I/O and operating system events also occur in serial applications, they are

addressed in the IPCO bound, because it is easier for our CXbound tool to characterize their

impact with this ordering. The performance impact of an unbalanced load is gauged not only

by overall1 load imbalance in the application, but also by the load imbalance within individual

parallel regions, which is extremely important for characterizing applications with multiple

phases (separated by barrier synchronization) with different non-uniformly distributed loads.

Finally, the effectiveness of static performance optimization can be compromised by dynamic

application/machine behavior which varies over the course of a run and cannot be predicted at

compile time.

For convenience, the uniprocessor bounds and parallel bounds follow two different nam-

ing conventions. For consistency, the names of most uniprocessor bounds, i.e. through the

MACS bound, remain unchanged from previous work. Due to the change in the way that the

finite cache effect is calculated, the new symbol $ and new name MACS$ are used for this

level, instead of the MACS1 bound used in [48]. For the parallel bounds, we rename the

MACS$ bound as the I (Ideal parallelization) bound, followed by the IP (Partial paralleliza-

tion), IPC (Communication), IPCO (I/O and OS events), IPCOL (overall Load imbalance),

IPCOLM (Multiphase load imbalance), and IPCOLMD (Dynamic load imbalance) bounds.

The gap between two successive bounds is named after the performance constraint(s) that

differentiates the two bounds. However, while we tried to assign a different letter to each new

gap, the letters C and M are each repeated twice in the entire bounds hierarchy. To avoid con-

fusion, we shall refer to the Communication gap and Multiphase gap as C′ gap and M′ gap,

respectively, to distinguish them from the Compiler inserted instructions gap and the

Machine peak performance.

1. Overall load imbalance refers to the imbalance of the distribution of the total load assigned to each processor over
the entire application.

123

4.2.2 Goal-Directed Performance Tuning

 The new bounds hierarchy matches the performance tuning methodology that we dis-

cussed in Chapter 3 and aids it in implementing a goal-directed performance tuning strategy.

Figure 4-2 shows the relationship between the performance tuning steps and the performance

gaps. Before each step, we consider specific gap(s). For example, the actions in Step 1 (parti-

tioning) are associated with gaps C’, L, M’, and D. Significant gaps help guide what specific

performance tuning actions should be considered for each step. A step may be skipped if there

is no significant gap associated with that step. After one or more performance tuning actions

are applied, the bounds hierarchy can be re-calculated to evaluate the effectiveness and the

side-effects of these actions.

��������
�	
����
	

��	�
	�����

����������
�
���
	������

������

������
�����	
������
�

���	����

����������
$
�%�����
���
	
��������������

�������
�������
�
��

Serial program

Performance-tuned parallel program

Profile or model

Load distribution
in each phase

for each phase
Profile or model
for multiple phases

Combined load
distribution

Profile shows
dynamic
behavior

Updated load
distribution
during runtime

Figure 4-2: Performance Tuning Steps and Performance Gaps.

�����

�����

����

����! ����"

#������
$
���������
�
��	�
	�����

��	����
����
�	
%����
����

����&

����'

A, C, S, $-gap

C’-gap

L-gap M’-gap D-gap

L, M’ ,D-gap

C’, L, M’, D-gap

124

Table 4-1 starting on page 145 lists the performance issues and tuning actions, together

with the performance gaps that each tuning action attempt to reduce (targeted gaps), and the

primary performance gaps that each tuning action may affect (primarily affected gaps). This

table is used in conjunction with Figure 4-2 for selecting appropriate tuning actions within

the goal-directed performance tuning process.

4.2.3 Practical Concerns in Bounds Generation

4.2.3.1 Symmetrical Applications

Originally, performance bounds analysis was developed for characterizing performance of

loop-based codes. Performance bounds analysis has been capable of explaining performance

gaps for individual loops from the Livermore Fortran Kernels (LFK) [45][117] and the NAS

Parallel Benchmark suite (NPB) [48]. For a perfectly parallelized Single-Program-Multiple-

Data (SPMD) application, the workload should be symmetrically partitioned among the pro-

cessors. Since the constraint of load imbalance is not considered until the Load Balance

(IPCOL) bound, the workload is assumed to be perfectly balanced, and thus the performance

bounds from M to ICPO are identical for each processor in parallel regions. Therefore, only

one set of performance bounds is calculated, by averaging the bounds among the processors.

For example, the M, MA, MAC, and MACS bounds for a parallel application are often approx-

imated by dividing the bounds acquired on single-processor runs by the number of processors.

If the parallel code presents a substantially different computational workload than a unipro-

cessor version, then these bounds should be calculated by evaluating the parallel version of

the code on one processor.

4.2.3.2 Automatic Bounds Generation

Automatic performance bounds generation is essential for users to apply bounds analysis

on large scale applications. As shown in [116], with automatic source-code analysis tools, com-

plicated codes on the KSR1 can be analyzed with the MACS bounds hierarchy. We believe

that an automatic tool should be able to generate the performance bounds described in Sec-

tion 4.2.1, by integrating the use of source-code analysis, profiling and tracing. In pursuit of

automatic bounds generation, we have successfully converted CXpa profiles into parallel

bounds with our tool, CXbound, discussed in Section 4.3. In Section 4.4, we demonstrate the

125

use of CXbound to generate parallel performance bounds automatically for characterizing a

large application.

4.2.3.3 Accuracy and Cost of Bounds Generation

For effective performance characterization, accurate performance bounds are necessary.

The impact of a performance constraint may not be reflected accurately by a performance gap

if the performance bounds are not accurate. A gap can be overestimated (or underestimated),

if the bound at the bottom (or top) of the gap is over-optimistic. A good bounding mechanism

should generate performance bounds that approximate their tightest lower bounds.

It can be very time-consuming to acquire the I (MACS$) bound precisely, since cache sim-

ulation may be necessary (see Section 4.3.1). Instead of acquiring the I bound, CXbound

reports the Ia bound (also see Section 4.3.1) as an approximation for the I bound since the Ia

bound is much easier to obtain. CXbound does check, however, the validity of this approxima-

tion, and notifies the user when this approximation is not accurate.

4.3 Generating the Parallel Bounds Hierarchy: CXbound

CXbound is a tool that converts profiles acquired by CXpa (see Section 2.3.2) into perfor-

mance bounds and gaps. In Sections 4.3.1 through 4.3.7, we discuss the mechanisms that

CXbound uses to acquire the I, IP, IPC, IPCO, IPCOL, and IPCOLM bounds of an application

running on a N-processor HP/Convex Exemplar. The limitations and possible future develop-

ment of CXbound are discussed in Section 4.5.

4.3.1 Acquiring the I (MACS$) Bound

The I (MACS$) bound measures the minimum run time required to execute the applica-

tion under an ideal (zero communication overhead and perfectly load balanced) parallel envi-

ronment with no I/O or OS interference. As mentioned in Section 4.2.3.1, the I bound for a

SPMD application is the average MACS$ bound among the processors. Thus, given the num-

ber of processors involved in the execution, N, and the MACS$ bounds on the runtime for indi-

vidual processors, Ω1, Ω2,..., ΩN, the averaged I bound is calculated as:

I Bound = (Σi=1..N Ωi)/N. (EQ 11)

126

The I bound excludes the coherence misses in a shared-memory application, but it is rela-

tively difficult to create a zero-communication-overhead environment for acquiring the I

bounds. Thus, CXbound uses the CXpa profiles acquired from single processor runs to approx-

imate the I bounds:

Ia Bound = (Total CPU Time from the One-Processor Profile)/N. (EQ 12)

Since one-processor runs do not generate coherence misses, the CPU time (as defined by

CXpa, the time that the CPU spent in computation and memory accesses) in the one-processor

CXpa profiles should measure the inherent computation and memory access time in the appli-

cation. The Ia bound generated by the above equation essentially assumes perfect paralleliza-

tion and linear speedup. For the Ia bound to be close to the I bound, the total computation time

should be independent of the number of processors.

Due to the higher collective cache capacity of an N-processor execution, in a general it will

generate fewer cache capacity, conflict, and replacement misses than the single-processor exe-

cution. As a result, the Ia bound may be larger than the I bound. For example, if the working

set for a one-processor run far exceeds the size of a processor cache, Ia will be heavily influ-

enced by the cache thrashing that results. As processors are added, and if eventually the

working set for a particular processor fits well within its cache (as it should), the gains from

the reductions in capacity, conflict, and replacement misses may far exceed the increasing

penalties of compulsory and coherence misses, and other parallel overhead factors which tend

to grow as the number of processors increases. This situation is commonly referred to as

superlinear speedup. To detect such cases, the cache miss information reported by CXpa is

used. CXbound will notify the user if the number of cache misses reported in the one-proces-

sor profile is significantly more than the misses reported in the N-processor profile; this noti-

fication should be taken as a warning that the Ia bound may be too pessimistic (relative to the

I bound).

4.3.2 Acquiring the IP Bound

The degree of parallelization in the application is a factor that can limit the parallelism in

a parallel execution. The application may contain sequential regions that are executed

sequentially by one processor. Let the total computation time in the sequential regions be Ωs

and total computation time in the parallel regions be Ωp, the IP bound for an N-processor exe-

127

cution is defined as the minimum time required to execute the application under the assump-

tion that the parallel regions are executed under an ideal parallel environment, i.e.

 IP Bound = Ωs+Ωp/N, (EQ 13)

which is also known as Amdahl’s Law.

As in the I bound, the computation time is approximated by CXbound using one-processor

CXpa profiles. The sequential CPU time and parallel CPU time can be separated by CXpa

even on a one-processor configuration.

The gap between the I bound and the IP bound, i.e.

P Gap = (Ωs+Ωp/N) - (Ωs+Ωp)/N = Ωs(N-1)/N, (EQ 14)

reflects the impact of imperfect parallelization of the application, since the P gap is propor-

tional to the sequential workload.

The degree of parallelization, which may be a more conventional metric for parallel pro-

grammers, can be computed as:

Degree of Parallelization = Ωp/(Ωs+Ωp) = 1 - (P Gap)/((N-1)*(I Bound1)). (EQ 15)

4.3.3 Acquiring the IPC Bound

The IPC bound is defined by the minimum time required to execute the application work-

load with actual communications on actual target processors, under the assumption that the

workload in the parallel portions is always perfectly balanced. Note that communications may

add extra workload to both the sequential portions and the parallel portions of the applica-

tion. Amdahl’s Law is reapplied to the increased sequential and parallel workload to acquire

the IPC bound for a N-processor execution, i.e.

 IPC Bound = Ωs′ + Ωp′ /N, (EQ 16)

where Ωs′ and Ωp′ denote the sequential and parallel workload assumed in the IPC bound.

1. Note that the I bound may be written in terms of Ωs and Ωp as (Ωs+Ωp)/N.

128

CXbound uses the CPU time in N-processor profiles to measure the run time that proces-

sors spend on computation and communication. The parallel CPU time (Ωp′) that the proces-

sors spend in the parallel regions, is calculated by

Ωp′ = Σq Σr cr,q , (EQ 17)

where cr,q is the total CPU time that processor q spends in parallel region r. The sequential

CPU time (Ωs′) is summed over the serial regions.

4.3.4 Acquiring the IPCO Bound

In many high-performance applications, input and output for a program occur mostly in

the form of accessing mass storage and other peripheral devices (e.g. terminal, network,

printer,...etc.). I/O events are mostly handled by the operating system (OS) on modern

machines. The OS also handles many other operations, such as virtual memory management

and multitasking, in the background. These background OS activities may or may not be orig-

inated by the target application, but can greatly affect the performance of the target applica-

tion.

To acquire the IPCO bound for an N-processor execution, CXbound first calculates the

sequential execution time (Ωs′′) and parallel execution time (Ωp′′) under the environment that

the IPCO bound models:

Ωs′′ = Σq=1..N Σr∈S wr,q , (EQ 18)

Ωp′′ = Σq=1..N Σr∈P wr,q , (EQ 19)

where wr,q is the wall clock time that processor q spent in region r, S is the set of sequential

regions, and P is the set of parallel regions. As we explained in Section 2.3.2, the wall clock

time reported by CXpa additionally includes the time spent in OS routines, which is not

included in the reported CPU time. Then, Amdahl’s Law is reapplied to the increased sequen-

tial and parallel execution times under the environment that the IPCO bound models, i.e.

 IPCO Bound = Ωs′′ + Ωp′′ /N. (EQ 20)

129

4.3.5 Acquiring the IPCOL Bound

Load imbalance affects the degree of parallelism in the parallel execution. The execution

time of an application with load imbalance is bounded by the time required to execute on the

most heavily loaded processor. The IPCOL bound is defined as the minimum time required to

execute the largest load assigned to one processor, under the assumption that the load from

different parallel regions and iterations that is assigned to a particular processor can simply

be combined.

The total wall clock time that processor q spent in parallel regions is calculated by sum-

ming processor q’s wall clock time over the parallel regions, i.e.

Ωp,q′′ = Σr∈P wr,q . (EQ 21)

The IPCOL bound for the parallel regions is determined by the heaviest parallel workload

among the processors; the IPCOL bound for the sequential region is carried over from the

IPCO bound (Ωs′′). Τhe IPCOL bound is thus

IPCOL Bound = Ωs′′+ Maxq=1..N {Ωp,q′′}. (EQ 22)

In Figure 4-3, we illustrate how the IPCO and IPCOL bounds are calculated from a per-

formance profile. The example run consists of a two-iteration loop, in which two parallel

regions are both executed on two processors. The workload distribution for this example is

shown in Figure 4-3(a). Since this example contains no sequential region, the IPCO bound

(41) is essentially the average workload over the two processors, and the IPCOL bound (42) is

the maximum overall workload between the two processors, as calculated in Figure 4-3(b). As

indicated by the L gap, the load imbalance of overall workload causes an overhead of 1, which

amounts to a 2.43% increase in execution time over a perfectly balanced execution.

4.3.6 Acquiring the IPCOLM Bound

The IPCOLM bound characterizes the multiphase load imbalance in the application. Mul-

tiphase load imbalance usually results from different workload distributions in different pro-

gram phases of the application that are separated by barrier synchronizations. The execution

time for each parallel region is determined by the most heavily loaded processor (the longest

130

Figure 4-3: Calculation of the IPCO, IPCOL, IPCOLM, IPCOLMD Bounds.

Iteration/Region Load on Processor 0 Load on Processor 1

1/1 10 5

1/2 10 15

2/1 5 6

2/2 15 16

(a) A Profile Example.

Iterations/Regions Load on Processor 0 Load on Processor 1

All/All 40 42

IPCO Bound = (40 + 42)/2 = 41

IPCOL Bound = Max{40, 42} = 42

Load Imbalance Gap = IPCOL - IPCO = 42 - 41 = 1

(b) Calculation of the IPCO and IPCOL Bounds.

Iterations/Region Load on Processor 0 Load on Processor 1 Max. Load

All/1 15 11 15

All/2 25 31 31

IPCOLM Bound = (Max. Load of Phase 1) + (Max. Load of Phase 2) = 15+31 = 46

Multiphase Gap = IPCOLM - IPCOL = 46 - 42 = 4

(c) Calculation of the IPCOLM Bound.

Iteration/Region Load on Processor 0 Load on Processor 1 Max Load

1/1 10 5 10

1/2 10 15 15

2/1 5 6 6

2/2 15 16 16

IPCOLMD Bound = Σ(Max. Load in each region for each iteration) = 10+15+6+16 = 47

Dynamic Gap = IPCOLM - IPCOL = 47 - 46 = 1

(d) Calculation of the IPCOLMD Bound.

131

running thread) in that region. The IPCOLM bound is calculated by summing the execution

time of the longest thread over the individual program regions, namely

IPCOLM Bound = Ωs′′ + Σr∈P Maxq=1..N {wr,q}. (EQ 23)

where wr,q is the wall clock time that processor q spent in region r, Ωs′′ is the lower bound for

the sequential workload carried over from the IPCO bound, P is the set of parallel regions,

and N is the number of processors.

The Multiphase (M′) gap (IPCOLM - IPCOL) characterizes the performance impact of

multiphase load imbalance. Note that an application can pose serious multiphase load imbal-

ance and still be well balanced in terms of total workload. As we illustrate in Figure 4-3(c),

the calculation of the IPCOLM bound finds the local maxima for individual parallel regions

and hence is never smaller than the IPCOL bound. The multiphase load imbalance in this

example causes a Multiphase gap of 4, which equals 4/42 = 9.5% runtime increase over the

IPCOL bound.

4.3.7 Actual Run Time and Dynamic Behavior

The actual run time is measured by the wall clock time of the entire application. The gap

between the actual run time and the IPCOLM bound (unmodeled gap) should characterize

both dynamic behavior and other factors that have not been modeled in the IPCOLM bound,

e.g. the cost of spawn/join and synchronization operations.

Dynamic workload behavior can occur if the problem domain or the workload distribution

over the domain changes over time. This happens often in programs that model dynamic sys-

tems. Dynamic behavior can result in an unpredictable load distribution and renders static

load balancing techniques ineffective. An IPCOLMD bound could be generated to model the

dynamic workload behavior if the execution time for each individual iteration could be sepa-

rately reported by CXpa, i.e.

IPCOLMD Bound = Ωs′′ + Σr∈P Σi=1,Num_Iter Maxq=1,N {wr,q,i} . (EQ 24)

where wr,q,i is the wall clock time that processor q spent in region r for iteration i, Ωs′′ is the

lower bound for the sequential workload carried over from the IPCO bound, P is the set of par-

allel regions, Num_Iter is the number of iterations, and N is the number of processors.

132

Unfortunately, CXpa is not suitable for measuring the execution time for each individual

iteration, and hence CXbound cannot generate the IPCOLMD bound. So far, we have not

found a proper tool to solve this problem on the HP/Convex Exemplar1. Thus in the later case

studies of actual codes in this dissertation, the dynamic behavior effects are lumped together

with the other “unmodeled effects” as the unmodeled (X) gap which is then calculated as

(Actual Execution Time) - (IPCOLM Bound).

For applying the above equation to our example in Figure 4-3, the maximum workload in

each instance of a parallel region is first computed, as shown in the ‘Max. Load’ column of

Figure 4-3(d). Then, the IPCOLMD bound is calculated by summing the maximum load in

each region for each iteration. The Dynamic (D) gap characterizes the performance impact of

the dynamic load imbalance in the application. The D gap in the above example is primarily

due to the change of load distribution in region 1 from iteration 1 to iteration 2. A more

dynamic example is given in Figure 4-4(a), and the performance problem, i.e. the dynamic

behavior, is revealed via the bounds analysis shown in Figure 4-4(b).

1. Two tracing tools are available on the HP/Convex Exemplar. CXtrace [79], a tracing tool developed by Convex, sup-
ports PVM programming only. SMAIT [38] was not designed to directly measure application performance.

Figure 4-4: An Example with Dynamic Load Imbalance.

Iteration/Region Load on Processor 0 Load on Processor 1

1/1 15 5

1/2 5 15

2/1 5 15

2/2 15 5

(a) A Profile Example

Bound Value Gap from the Previous Bound

IPCO 40 N/A

IPCOL 40 0

IPCOLM 40 0

IPCOLMD 50 10

(b) Calculation of the IPCO and IPCOL Bounds

133

4.4 Characterizing Applications Using the Parallel Bounds

In this section, we demonstrate the use of the hierachical bounds to characterize applica-

tion performance in a user-friendly and effective fashion. First, in Section 4.4.1, to prove these

concepts, we characterize a few matrix operation programs with CXbound. These examples

illustrate the correlation between the performance gaps and the weakness in the programs.

Then, in Section 4.4.2, to show the effectiveness of this characterization methodology, we

characterize a large finite-element application and show how well the performance behavior

of this relatively complex application is captured by these easily understood performance

bounds.

4.4.1 Case Study 1: Matrix Multiplication

4.4.1.1 Baseline Matrix Multiplication

Matrix multiplication, as shown in Figure 4-5, is one of the most frequently used com-

puter algorithms. In this characterization, the subroutine MULT1 was executed 100 times

statically without any change. The initialization and multiplication loop were automatically

parallelized by the Convex Fortran compiler [26][27] with optimization level 3. Spawn and

join were inserted at the beginning and the end of each parallel loop by the compiler.

The results of the bounds analysis on MM1 for configurations of 1 to 8 processors are

shown in Figure 4-6, and Figure 4-7. From Figure 4-7, It is clear that communication becomes

a more serious performance bottleneck as the number of processors grows. Focusing on the

communication pattern, we found that the compiler parallelized the initialization loop on

index i, while the multiplication loop is parallelized on index j. The compiler interchanges the

loop indices for the multiplication loop to optimize the data access pattern. As we have dis-

cussed in Chapter 3, multiple domain decompositions incur data redistribution cost. Thus, by

parallelizing on two different indices, the code generated more coherence communication than

it would if those two loops were both parallelized on index j.

To correct this problem, we manually interchanged the indices i and j for the two loops1,

as shown in Figure 4-8. The two loops in this new program, MM2, are now both parallelized

134

on index j. The performance bounds of MM2, shown in Figure 4-9, indicate that the perfor-

mance of MM2 is generally better than MM1, primarily because the communication gap (gap

between the IPC and IP bound) is reduced. This difference is more visible in Figure 4-10

which shows the performance comparison of MM1 and MM2 for an 8-processor configuration.

Since the two loops in MM2 are parallelized consistently, MM2 maintains a better cache utili-

zation (processor locality), and hence MM2 has less communication overhead.

4.4.1.2 Load Unbalanced Matrix Multiplication

To illustrate the effects of load imbalance, we split the matrix multiplication loop into two

poorly balanced loops, as shown in program MM_LU in Figure 4-11. For each of these two

loops, the workload for a particular j depends on the value of j, since the iteration space of the

1. Actually, we only need to interchange the initialization loop. In contrast to MM1, the multiplication loop in MM2 is
explicitly interchanged.

1 program MM1
2 integer iter
3 do iter = 1, 100
4 call MULT1
5 end do
6 end

7 subroutine MULT1
8 parameter (N=512)
9 double precision a(N,N), b(N,N), c(N,N)
10 integer i, j, k

11c initialization loop
12 do i=1, N
13 do j=1, N
14 a(i,j) = sin(i*j*0.1)
15 b(i,j) = cos(i*j*0.1)
16 end do
17 end do

18c multiplication loop
19 do i=1, N
20 do j=1, N
21 c(i,j) = 0.0
22 do k=1, N
23 c(i,j) = c(i,j) + a(i,k) * b(k,j)
24 end do
25 end do
26 end do

27 end

Figure 4-5: The Source Code for MM1.

135

Figure 4-6: Parallel Performance Bounds for MM1.

0

100

200

300

400

500

600

700

1 2 4 8

No. of Processors

%
 o

f
T

im
e

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

Figure 4-7: Performance Gaps for MM1.

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 4 8

No. of Processors

%
 o

f
T

im
e

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

136

Figure 4-8: The Source Code for MM2.

1 program MM2
2 integer iter
3 do iter = 1, 100
4 call MULT2
5 end do
6 end

7 subroutine MULT2
8 parameter (N=512)
9 double precision a(N,N), b(N,N), c(N,N)
10 integer i, j, k

11c initialization loop
12 do j=1, N
13 do i=1, N
14 a(i,j) = sin(i*j*0.1)
15 b(i,j) = cos(i*j*0.1)
16 end do
17 end do

18c multiplication loop
19 do j=1, N
20 do i=1, N
21 c(i,j) = 0.0
22 do k=1, N
23 c(i,j) = c(i,j) + a(i,k) * b(k,j)
24 end do
25 end do
26 end do

27 end

Figure 4-9: Parallel Performance Bounds for MM2.

0

100

200

300

400

500

600

700

1 2 4 8

No. of Processors

%
 T

im
e

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

137

innermost loop k depends on the value of j. It should not be surprising that the compiler failed

to balance the load distribution in these two loops. The compiler simply parallelizes the itera-

tion space of loop j evenly. As a result, each of these two loops exhibits poor load balance. The

bounds analysis of the program, shown in Figure 4-12, correctly indicates that the cause of

the load imbalance is the multiphase load imbalance (not the overall load imbalance, since the

load summed over both loops is in fact fairly well balanced).

We note that the I bound of MM_LU (shown in Figure 4-12) is much larger than that of

MM1 due to its poor cache behavior. The compiler will not apply loop blocking for any loop

whose iteration space is not constant. Consequently, it did not apply loop blocking within the

k-indexed loop of MM_LU (shown in Figure 4-11).

4.4.1.3 Performance in a Multitasking Environment

The performance of a parallel program can be very sensitive to interference from other

programs running on the same machine. Here we study such a case by characterizing the per-

formance of MM2 when it was performed on a heavily loaded multitasking system. Figure 4-

13 shows the performance comparison of MM2 on dedicated and multitasking configurations

Figure 4-10: Comparison of MM1 and MM2 for 8-processor Configuration.

0

20

40

60

80

100

120

140

160

mm1 mm2

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

138

using four processors. The execution time on the multitasking processors is about 8 times

longer than on the dedicated processors.

The bounds analysis shows that most performance gaps are larger with multitasking. The

Parallelization gap is increased primarily because the interference results in cache pollution

and memory contention which in turns increases the sequential workload. The Communica-

tion gap is slightly increased due to cache pollution and memory contention. The OS gap is

much larger because of the increased wall clock time caused by the interruptions from the OS

for task switching. The Load Balance gap indicates that multitasking might affect the execu-

1 program MM_LU
2 integer iter
3 do iter = 1, 100
4 call MULT_LU
5 end do
6 end

7 subroutine MULT_LU
8 parameter (N=512)
9 double precision a(N,N), b(N,N), c(N,N)
10 integer i, j, k

11c initialization loop
12 do j=1, N
13 do i=1, N
14 a(i,j) = sin(i*j*0.1)
15 b(i,j) = cos(i*j*0.1)
16 end do
17 end do

18c multiplication loop 1
19 do j=1, N
20 do i=1, N
21 c(i,j) = 0.0
22 do k=1, j
23 c(i,j) = c(i,j) + a(i,k) * b(k,j)
24 end do
25 end do
26 end do

27c multiplication loop 2
28 do j=1, N
29 do i=1, N
30 do k=j+1, N
31 c(i,j) = c(i,j) + a(i,k) * b(k,j)
32 end do
33 end do
34 end do

35 end

Figure 4-11: Source Code for MM_LU

139

Figure 4-12: Performance Bounds for MM_LU

0

200

400

600

800

1000

1200

1400

1 2 4 8

No. of Processors

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

Figure 4-13: Performance Comparison of MM2 on
Dedicated and Multitasking Systems

0

200

400

600

800

1000

1200

1400

1600

1800

Dedicated Multitasking

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

140

tion differently on individual processors, e.g. one processor might be affected more than the

others. The Multiphase gaps are virtually nonexistent because MM2 contains only one domi-

nant loop. The large unmodeled gap is possibly due to dynamic behavior caused by sporadic

interference in the multitasking environment.

4.4.2 Case Study 2: A Finite-Element Application

In this section, we demonstrate the effectiveness of the performance bounds analysis on a

representative portion of a commercial full vehicle crash simulation code. Ported is the ver-

sion of the application that was ported to the HP/Convex Exemplar without machine-depen-

dent performance tuning. Ported was converted from serial code by manually parallelizing the

most time consuming loops, which collectively account for about 90% of the workload on a one-

processor Exemplar SPP-1600 run.

The performance of Ported is characterized by the bounds and gaps in Figure 4-14. The

actual performance is effectively accelerated within one 8-processor hypernode, thanks to low

intra-hypernode communication latency. However, as the number of processors increases

beyond one hypernode, the combined effects of partial parallelization, inter-hypernode com-

Figure 4-14: Performance Bounds for the Ported Code

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Number of Processors

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

141

munication, load imbalance, and unmodeled behaviors prohibit the code from further

speedup. Certain initial performance tuning directions are suggested by these bounds:

• P-gap: the degree of parallelization should be improved

• C’, L, M’ gaps: better domain decomposition schemes should be adapted to control the com-

munication and improve load balance.

• Unmodeled gap: a static domain decomposition should be used to reduce dynamic task

migration by binding the computations and data to the processors permanently.

We improved the degree of parallelization and the domain decomposition with a version

called Tuned. A domain decomposition tool, Metis [29], and a weighted domain decomposition

technique [2][51] were adapted for decomposing the finite-element graphs and the computa-

tion associated with the graph. This explicit domain decomposition has the desirable side-

effect of exposing the data dependencies between subdomains in Tuned. This information

helps the programmer to manually parallelize more loops. Also, each processor is now respon-

sible for the computation associated with one subdomain with a permanent assignment,

which minimizes unfortunate task migrations during runtime.

The performance characterization of Tuned is shown in Figure 4-15. A comparison of per-

formance on the 16-processor configuration (Figure 4-16) shows that Tuned achieves better

performance, due to a higher degree of parallelization (P gap), less communication overhead

(C′ gap), and better load balance (L gap). The unmodeled gap is not noticeable for Tuned,

because Tuned uses a permanent task assignment scheme.

Nevertheless, Tuned still runs slower on 16 processors than it runs on 8 processors.

Imperfect parallelization, communication overhead, overall load imbalance, and multiphase

load imbalance all contribute to the poor performance on 16 processors. Further performance

tuning techniques, as discussed in Chapter 3, are necessary to address these problems.

142

Figure 4-15: Performance Bounds for the Tuned Code

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16

Number of Processors

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

Figure 4-16: Performance Comparison between Ported and Tuned
on 16-processor Configuration

0

200

400

600

800

1000

1200

1400

1600

Ported Tuned

T
im

e
(s

ec
.)

NotModeled_Gap

Multiphase_Gap

Load_Gap

OS_Gap

Comm_Gap

Para_Gap

Ideal_Bound

143

4.5 Summary

As we have demonstrated in Section 4.4, relatively complicated performance profiles can

be summarized with a relatively simple set of performance bounds to provide more effective

performance visualization and insights into program behavior. The performance bounds

methodology implemented in our automatic tool, CXbound, has successfully pinpointed per-

formance weaknesses of the parallel applications in our case study. Our experiences show

that the bounds analysis can effectively detect performance bottlenecks, guide the use of per-

formance tuning techniques, and evaluate the results of performance tuning.

The bounding mechanism in CXbound depends on the performance profiles provided by

CXpa. As a result, the limitations of CXpa also affect the implementation of CXbound. Major

limitations in the current CXbound implementation are discussed below:

• Proper utilization of CXpa is necessary to ensure accurate performance bounds. The pro-

gram should be profiled on machines as clean as possible to avoid disturbance from other

tasks, unless such disturbance is of interest to the performance study. Since the bounds

obtained from CXbound are based on the profile of individual runs, one set of bounds may

not characterize the performance of other runs.

• As mentioned in Section 4.3.1, the I bound and the IP bound do not consider the increased

cache capacity as more processors are used. Therefore they can be misleading if the cache

behavior on the one-processor configuration is very different from that on an N-processor

configuration. Hence, cache misses reported in the CXpa profiles are used to assess the

accuracy of these two bounds. To gain better accuracy for the I and IP bounds, trace-driven

simulation tools can be used to isolate the coherence misses in the N-processor execution.

For the same reason, the gap between the IPC and IP bounds characterizes the negative

effect of increased communication plus the beneficial effect of reduced cache misses. Again,

cache miss reports should be used to assess whether the effect of increased cache capacity

is negligible.

• Since CXpa is not designed to profile individual iterations, CXbound cannot automatically

generate the IPCOLMD bound. Thus, the performance impact of dynamic behavior is

included in the gap between the actual runtime and the IPCOLM bound, but cannot be dif-

ferentiated from other unmodeled factors with this tool.

144

• CXbound does not recognize parallel program structures that CXpa does not recognize.

This limits automatic bounds generation to parallel structures that are formed by compiler

directives. For the user to profile unrecognized parallel structures, such as those that are

formed by hand-coded synchronizations, manual instrumentation may be necessary. We

found that a pseudo-loop can often be used to identify a code segment. By enclosing a code

segment in a pseudo-loop that iterates only once, the enclosed code segment is recognized

and is therefore profiled by CXpa as a non-parallel loop. However, special instructions will

be needed by CXbound to handle such loops.

• The current implementation of CXbound does not support message-passing codes. Mes-

sage-passing codes perform communications via message-passing libraries, and the com-

munication time spent in the library is not reported by CXpa unless the library itself is

instrumented.

Although these limitations may compromise the usefulness of CXbound in some cases, the

current implementation of CXbound has demonstrated the potential of the hierachical perfor-

mance bounds analysis and has been quite useful in our case studies (as illustrated in Section

4.4).

There are several possible directions for the future development of CXbound. Some of the

CXbound limitations can be eliminated by adding a few enhancements to CXpa, such as rec-

ognizing more parallel structures and profiling individual iterations. While such enhance-

ments can be very difficult for the user to implement, the vendor (HP/Convex) should be able

to accomplish them with modest effort. Also, porting CXbound to other platforms should be

straightforward if the target machines are made to provide similar profile and/or trace tools

(e.g. [119][120]). As we have shown in this section, calculation of the bounds is simple, given

proper support from the machine.

145

Step Performance
Issue Tuning Action

Targeted
Performance
Gap(s) in this

Step

Primarily
Affected

Performance
Gaps

Partitioning the
Problem (Step 1)

(I-1) Partitioning an
Irregular Domain

(A-1) Applying a Proper Domain
Decomposition Algorithm for (I-1) P $, P, C’, L, M’, D

Tuning the Com-
munication Perfor-

mance (Step 2)

(I-2) Exploiting Pro-
cessor Locality

(A-2) Proper Utilization of Distrib-
uted Caches for (I-2) C’ $, C’

(A-3) Minimizing Subdomain
Migration for (I-2) C’ C’, L, M’, D

(I-3) Minimizing
Interprocessor Data

Dependence

(A-4) Minimizing the Weight of Cut
Edges in Domain Decomposition

for (I-3)
C’ C’, L

(I-4) Reducing Super-
fluity (A-5) Array Grouping for (I-4) C’ C’, $

(I-5) Reducing Unnec-
essary Coherence

Operations

(A-6) Privatizing Local Data
Accesses for (I-5) C’ C’, $, M

(A-7) Optimizing the Cache Coher-
ence Protocol for (I-5) C’ C’, $

(A-8) Cache-Control Directives for
(I-5) C’ C’, $

(A-9) Relaxed Consistency Mem-
ory Models for (I-5) C’ C’, $

(A-10) Message-Passing Directives
for (I-5) C’ C’, $

(I-6) Reducing the
Communication Dis-

tance

(A-11) Hierarchical Partitioning for
(I-6) C’ C’, $, L

(A-12) Optimizing the Subdomain-
Processor Mapping for (I-6) C’ C’

(I-7) Hiding the Com-
munication Latency

(A-13) Prefetch, Update, and Out-
of-order Execution for (I-7) C’ C’, $, M

(A-14) Asynchronous Communica-
tion via Messages for (I-7) C’ C’, $

(A-15) Multithreading for (I-7) C’ C’, $, S

(I-8) Reducing the
Number of Communi-
cation Transactions

(A-16) Grouping Messages for (I-8) C’ C’, S

(A-17) Using Long-Block Memory
Access for (I-8) C’ C’, S, $

(I-9) Distributing the
Communications in

Space
(A-18) Selective Communication

for (I-9) C’ C’

(I-10) Distributing
the Communications

in Time

(A-19) Overdecomposition to
Scramble the Execution for (I-10) C’ C’, S, $

Table 4-1: Performance Tuning Actions and
Their Related Performance Gaps. (1 of 2)

146

Optimizing Proces-
sor Performance

(Step 3)

(I-11) Choosing a
Compiler or Com-

piler Directive

(A-20) Properly Using Compilers or
Compiler Directives for (I-11) C, S, $ C, S, $, C’

(A-21) Goal-Directed Tuning for
Processor Performance for (I-11) - -

(I-12) Reducing the
Cache Capacity

Misses

(A-22) Cache Control Directives for
(I-12) $ $, C

(A-23) Enhancing Spatial Locality
by Array Grouping for (I-12) $ $, C

(A-24) Blocking Loops Using Over-
decomposition for (I-12) $ $, C

(I-13) Reducing the
Impact of Cache

Misses

(A-25) Hiding Cache Miss Latency
with Prefetch and Out-of-Order

Execution for (I-13)
$ $, C, M, S

(A-26) Hiding Memory Access
Latency with Multithreading for (I-

13)
$ $, C, S

(I-14) Reducing Con-
flicts of Interest

between Improving
Processor Perfor-

mance and Commu-
nication Performance

(A-27) Repeating Steps 2 and 3 for
(I-14) C, S, $, C’ C, S, $, C’

Balancing the
Load for Single
Phases (Step 4)

(I-15) Balancing a
Nonuniformly Dis-

tributed Load

(A-28) Profile-Driven Domain
Decomposition for (I-15) L L, C’

(A-29) Self-Scheduling for (I-15) L L, C’, M’, D

Reducing the Syn-
chronization/

Scheduling Over-
head (Step 5)

(I-16) Reducing the
Impact of Load

Imbalance

(A-30) Fuzzy Barriers for (I-16) L, M’ L, M’, D

(A-31) Point-to-Point Synchroniza-
tions for (I-16) L, M’ L, M’, D

(A-32) Self-scheduling of Overde-
composed Subdomains for (I-16) L, M’ L, M’, D

 (I-17) Reducing the
Overall Scheduling/

Synchronization
Overhead

L, M’, D L, C’, M’, D

Balancing the
Combined Load for

Multiple Phases
(Step 6)

(I-18) Balancing the
Load for a Mul-

tiphase Program

(A-33) Balancing the Most Critical
Phase for (I-18) M’ M’, L, D

(A-34) Multiple Domain Decompo-
sitions for (I-18) M’ M’, C’, L, D

(A-35) Multiple-Weight Domain
Decomposition Algorithms for (I-

18)
M’ M’, L, D

(A-36) Fusing the Phases and Bal-
ancing the Total Load for (I-18) M’ M’, L, D

Balancing
Dynamic Load

(Step 7)

(I-19) Reducing the
Dynamic Load Imbal-

ance

(A-37) Dynamically Redecompos-
ing the Domain for (I-19) D D, C’, L, M’

(A-38) Dynamic/Self-Scheduling for
(I-19) D D, C’, L, M’

(A-39) Multiple-Weight Domain
Decomposition for (I-19) D D, C’, L, M’

(I-20) Tolerating the
Impact of Dynamic

Load Imbalance
(A-40) Relaxed Synchronizations

for (I-20) D D, C’, L, M’

Step Performance
Issue Tuning Action

Targeted
Performance
Gap(s) in this

Step

Primarily
Affected

Performance
Gaps

Table 4-1: Performance Tuning Actions and
Their Related Performance Gaps. (2 of 2)

147

CHAPTER 5. MODEL-DRIVEN PERFORMANCE TUNING

From our experience with performance tuning, we have found that a high-level abstrac-

tion of the application is quite helpful for assessing application performance. In this chapter,

we discuss our application performance modeling methodology, Model-Driven Analysis

(MDA), which analyzes an application’s performance with an intermediate-level abstraction

of the machine-application behavior. With MDA, we proposed a methodology, called Model-

Driven Performance Tuning (MDPT) to facilitate the conventional performance tuning process

by employing the application model as the object of performance tuning. We developed several

key tools and conducted a preliminary study to evaluate this novel approach.

In this preliminary study, we target at providing a fast and robust mechanism for esti-

mating the effectiveness of the applied tuning actions, as well as resolving the conflicts among

these actions. Our case study shows that high-level application models can be well-built by

programmers using their knowledge about the application and basic performance assessment

tools, especially when the knowledge and tools that are required to build application models

are already extensively used in performance tuning. Implementing performance tuning with

the aid of these models is fairly straightforward, and MDA is useful in guiding the use of per-

formance tuning techniques as well as resolving the conflicts among them.

5.1 Introduction

The machine-application interactions in a parallel system can be very complicated, even

to a performance tuning expert. While various performance assessment tools exist to help

expose the problems in the application performance and extract specific machine-application

interactions, the performance data collected by previously existing tools can be very compli-

cated and time-consuming to analyze. In a hand tuning situation, the programmer has to

carry out this work repeatedly since most high-level program analysis and performance tun-

ing decisions are done by the programmer.

148

Unfortunately, most application developers are unable or unwilling to deal with such a

complex performance tuning process, even when provided with various tools and a systematic

tuning paradigm. In our experience working with application developers, as computer archi-

tects and performance tuning specialists, we often have to spend a considerable amount of

time learning and analyzing the behavior of the application. Ironically, we have spent much

time learning what application developers already knew about their applications, such as pro-

gram flow, data access patterns, etc. We believe that a better way of collaboration is needed to

improve the communications between application developers and performance tuning special-

ists so that each side can focus more on their specialities.

We address this issue by forming an intermediate representation of the application to facil-

itate the communications between the application developer and the performance tuning spe-

cialist, as well as to simplify the problems from each side’s point of view. We call this

intermediate representation an application model. Our methodology, called Model-Driven

Analysis (MDA), was developed for analyzing the application performance by firstly trans-

forming the application into a model and simulating the machine-application interactions on

the model.

The first phase in MDA is called Application Modeling (AM), which generates specifica-

tions of the application behavior, including the application’s control flow, data dependence,

domain decomposition, and the weight distribution over the domain. This phase can be car-

ried out by the application developer with minimal knowledge about machine-application

interactions. We have designed a language, called the Application Modeling Language (AML)

for the user to specify the application model and incorporate results from performance assess-

ment tools, such as profiling.

The second phase in MDA, called Performance Modeling (PM), derives performance infor-

mation based on the application model. In PM, the application model is analyzed via simula-

tion. A simulation tool, called the Model-Driven Simulator (MDS), is developed to analyze the

data flow, working set, cache utilization, workload, degree of parallelism, communication pat-

tern, and the hierarchical performance bounds. MDS performs a broad range of analysis that

would require combinations of conventional performance assessment tools. Results from MDS

are used to validate the application model by comparing results with those of previous perfor-

149

mance assessments in known cases (both cases that were previously used to generate the

model, as well as new cases with new profiles).

The MDA methodology supports the notion of Model-Driven Performance Tuning (MDPT),

where the application model, instead of the application, becomes the object of performance

tuning. In MDPT, proposed performance tuning actions are first installed in the application

model and evaluated via MDS to assist the user in making tuning decisions. This concept of

the MDPT approach, the capabilities it provides, and its potential are illustrated in Figure 5-

1 and discussed below: (each of the following paragraphs is indicated by a number in the fig-

ure)

1. Various sources of performance assessment and program analysis contribute to the AM

phase for providing a more complete, accurate model. Performance assessment tools and

application developers both contribute to creating the application model.

2. In the PM phase, MDS is carried out to derive information by analyzing the machine-

application interactions between the application model and the machine model. The

machine model is based on the machine characterization techniques discussed in Section

2.1.

application

machine

performance
tools

Figure 5-1: Model-Driven Performance Tuning.

modifying the application code

adjusting the machine

performance
tuning

application
model (AM)

modifying the

machine
model

machine
characterization

machine-application
interaction

model-driven
simulation (PM)

application model

(1)

adjusting the
machine model

Application
Developer

(2) (3)

(4)

(6)

(5)

(6)

150

3. The application model serves as a medium for experimenting with the application of per-

formance tuning techniques as well as resolving the conflicts among them. In MDPT, per-

formance tuning techniques are first applied and evaluated on the application model

using MDA and then ported to the code, which can potentially shorten the application

development time.

4. The application model can be tuned by either the programmer or the compiler. A properly

abstracted application model helps the user or the compiler assess the application perfor-

mance at an adequate level, without the overkill burden of tuning by carrying out trans-

formations and performance analysis directly on the application and repeatedly handling

the high volume of raw performance data that is produced.

5. In addition to tuning the application code, the machine model can be tuned to improve the

application performance. Using MDA, the users are given the opportunity to evaluate var-

ious machine configurations or different machines for specific applications without actu-

ally reconfiguring or building the machine.

6. After tuning actions are evaluated with MDA, they are applied to the application code

and/or the target machine to assess the actual improvement, validate, and possibly recali-

brate the models.

In this chapter, we propose an application development environment for experimenting

with the concept of MDPT, as illustrated in Figure 5-2. We gather program/performance infor-

mation from the programmer, and from existing performance tools such as CXpa. In Section

5.2, we discuss how to model an application and how we build the application model using our

application modeling language (AML). We have developed an MDS that incorporates machine

models based on the HP/Convex Exemplar SPP-1000/1600. In Section 5.3, we show how the

data flow, the communication pattern, the load imbalance, and the execution time are esti-

mated by incorporating several techniques discussed in the previous chapters into MDS. In

Section 5.4, we illustrate MDA and MDPT with our example irregular application, CRASH

(see Section 1.3.2). Section 5.5 summarizes the results.

151

5.2 Application Modeling

The performance of an application is fundamentally governed by (1) the program (algo-

rithm), (2) the input (data domain/structures), and (3) the machine that are used to execute

the application. It is relatively difficult to observe machine-application interactions at this

level, since detailed machine operations are often hidden from the programming model that is

available to the programmer.

We would like to model the application at a level that provides us with more precise infor-

mation on how the application behaves, especially the behavior that directly affects perfor-

mance. The control flow and the data dependence in the application are modeled because they

limit the instruction schedule and determine the data access pattern for the application. The

decomposition of the input data determines the decomposition of the workload (for a SPMD

Figure 5-2: Model-driven Performance Tuning.

Tuning

Model-driven

Modeling

Simulation

High-level Perf.
Characterization

Performance

Application

(MDS)

(AM)

Performance

Application

Extraction
(Human & CXpa)

(within MDS)

Performance
Modeling
(PM)

152

application). The layout of the data structure determines the data allocation and affects the

actual data flow in the machine, especially for a cache-based, distributed shared-memory

application. The workload in the application certainly requires resources from the processors

and hence needs to be modeled for addressing load balance problems. An application model is

acquired by abstracting (1) control flow, (2) data dependence, (3) domain decomposition, (4)

data layout, and (5) the workload from the application. These five components are hereafter

referred to as modules of the application model.

Figure 5-3 illustrates how we model a CRASH-like application on the HP/Convex Exam-

pler via the use of source code analysis (mostly done by the programmer), profiling (CXpa),

and trace-driven simulation tools (e.g. Smait, Dinero, CIAT/CDAT). In this flow chart, a solid

line indicates a path that we currently employ to create a particular module, and a dashed

line indicates an additional path that might be useful for creating the module. We briefly

describe the process used to create these modules for a CRASH-like application as follows:

• The control structure, the data dependence, and the data layout that are encoded in the

program are abstracted via source code analysis. While analyzing irregular applications

can be difficult for compilers, it can be done by humans, especially the author(s) of the

Figure 5-3: Building an Application Model.

program

layout

source-codetrace-drivenprofile-driven domain

analysis analysisanalysis decomposition Sources of

machine input data Application

data
dependence Application

Model

control
flow

weight
distribution

domain
decomposition

algorithm Analysis

153

code. However, since compilers are useful for analyzing most regular applications, we

assume that the generation of these modules can be done mostly by converting the results

of compiler analysis (from the internal representation used by the compiler), thereby free-

ing the programmer to focus on the irregularities in the application.

• We use weights to represent the application workload in different code sections. Although

the instruction sequence in a code section can be extracted to model the workload, accu-

rately predicting the execution time of the code section based on the instruction sequence

can be rather complicated and difficult. Profile-driven analysis can be used straightfor-

wardly by the user for extracting the weights where the load is uniformly-distributed. For

non-uniformly-distributed cases, techniques such as the weight classification and predica-

tion method developed by Tomko and Davidson [30] may be needed.

• In an SPMD application, the computation is decomposed by decomposing the domain. The

domain decomposition can be implicitly specified in the application by DOALL statements,

or explicitly programmed into the code according to the output of a domain decomposition

package such as Metis [29]. As mentioned in Section 1.3.1, the data dependence and the

weight distribution of the application are given as inputs to the domain decomposition

package.

• Ambiguities in the control flow and the memory references, e.g. IF-THEN statements and

indirect array references, reveal major weaknesses in compiler analysis. It is possible to

clarify these ambiguities by profiling or tracing the application, which can be used to auto-

mate the specifications of control flow and data dependence or validate the model.

We believe that building such an application model is highly feasible for the application

developers with the programming tools available today. Most of the above procedures

involved in modeling an application require very little knowledge about the target machine,

and tools, such as profiling, provide additional help in measuring the workload and also help-

ing the programmer to extract the application behavior.

Depending on the user, some of the modules can be modeled in detail, while some may be

relatively simplified. More precise modeling of application behavior may occasionally be

needed in some situations for carrying out specific performance tuning techniques and solving

particular performance problems when the simplified modules are shown to be inadequate. In

general, however, it is most efficient to use a model that is as simple as possible for dealing

with the major problems being addressed. Simplifying the modeling of less relevant applica-

154

tion behavior may reduce the amount of work required to model the application and the com-

plexity of analyzing the model. The design of AML intends to provide the user with flexibility

in modeling of the application at various levels of detail.

We incrementally extend the capability of AML to model the application behavior that we

have encountered in our test cases. So far, we have successfully modeled several programs

from the NAS benchmarks as well as CRASH-SP and CRASH-SD. The syntax of our prelimi-

nary version of AML is quite simple and limited, because it is intended to prove the concept of

model-driven analysis and model-driven performance tuning. As currently implemented,

AML input is actually written in tabular form. However, AML is being revised to add some

capabilities and improve its usability, primarily by implementing a parser that can interpret

the more humanly readable (and writable) input format used in this dissertation, and convert

it to the tabular form that AML uses internally.

5.2.1 The Data Layout Module

The data layout module declares the type, size, and layout for the major data structures

used in the application. Figure 5-4 shows a data layout module for CRASH. The first argu-

ment in each line defines the type of the data structure, the second argument is the name of

the data structure, then the dimension of the data structure is specified (if it is an array), and

finally the alignment or specific layout method can be attached.

Currently, AML supports most Fortran data structure types and a few user-defined types,

such as VECTOR in the above example. More sophisticated C language data structures, such

as structures, unions, and pointers, add considerable complexity to the parser of MDS, so they

are not present in the current version, but they are certainly realizable in a future version.

INTEGER Num_Elements;
INTEGER Type (1:Max_Elements) ALIGNED_32;
INTEGER Num_Neighbors (1:Max_Elements) ALIGNED_32;
INTEGER Neighbor (1:Max_neighbor_per_Element,1:Max_Elements) ALIGNED_32;
VECTOR Force (1:Max_Elements) ALIGNED_32;
VECTOR Position (1:Max_Elements) ALIGNED_32;
VECTOR Velocity (1:Max_Elements) ALIGNED_32;

Figure 5-4: An Example Data Layout Module for CRASH.

155

The array dimension by default uses Fortran language’s row-major convention. MDS can

be configured to use C language’s column-major convention. AML allows the user to align

data structures to begin at 2n-byte boundaries. The arrays in the above example are all

aligned to 32-byte boundaries to ensure that they do not reside in the same cache line

together with any other data structures.

As far as performance is concerned, modeling the layout of all data structures is not neces-

sary. Data structures of minimum impact on the layout of other data structures or the perfor-

mance, such as local, temporal, or scalar variables, may be ignored.

The memory layout for data structures is used by MDS to generate the memory reference

addresses for the data accesses in the application. As we noted in previous chapters, data lay-

out can affect the application performance in terms of shared-memory communication and

cache-memory traffic. By modeling the data layout of the application, we can study perfor-

mance problems related to the data layout via simulating the memory reference pattern in

MDS.

Data structures declared in the data layout module need not to be bound with values

unless the values in the data structures are to be used by MDS. For example, the values of the

Force, Position, and Velocity arrays are not related to the performance; in contrast, the

values of Num_Elements, Type, Num_Neighbors, and Neighbor are needed for controlling

the program flow in CRASH, hence their values should be specified. Binding values to these

data structures is carried out in the data dependence module discussed in Section 5.2.3.

5.2.2 The Control Flow Module

5.2.2.1 Control Flow Graph

Most compilers decompose a program into a set of basic blocks, “each of which is a

sequence (zero or more) of instructions with no branch instructions, except perhaps the last

instruction, and no branch targets or labels, except perhaps the first instruction,” as described

by Wolfe [121]. Compilers often use a directed graph, called the control flow graph (CFG), to

represent the control flow in the program. In a CFG, each vertex represents a basic block, and

each edge represents the potential control flow between two basic blocks.

156

While basic blocks are commonly used in compilation, they are usually restricted to repre-

sent small code sections. Often, we intend to model the application at a level that treats cer-

tain program constructs, such as loops or subroutines, as a unit. We would like to treat these

program constructs similarly to the way basic blocks are used in a compiler. Therefore, we use

tasks, as basic units to specify the control flow in application modeling.

Definition 2. Task: A task is an arbitrarily defined sequence (zero or more) of instructions

that contain no branch instructions that jump out of the task, except perhaps the last instruc-

tion, and no branch targets that can be hit from branch instructions in other tasks, except

perhaps the first instruction. In addition, a task contains no instructions that synchronize

with other tasks or force the task to migrate onto another processor, except perhaps the first

and/or the last instruction.

A task can be a basic block, a loop, or a subroutine, as long as its execution is neither

interrupted by synchronization nor further broken to be executed by multiple processors. This

gives us more freedom in defining the program units for studying the application behavior.

Once a task is running on a processor, the task cannot be stopped or rescheduled to run on

another processor by the program. Using tasks, we can specify the control flow by a CFG

where each vertices now represents a task.

Figure 5-5 shows a CFG for CRASH, where four tasks are defined: (1) Initialization,

(2) Contact_force, (3) Loop_contact_neighbor, and (4) Update_material. The code

section represented by each task is shown in Figure 5-6. We choose not to model the details

within these tasks rather we focus on the interactions among them. The CFG can be enhanced

to reflect the actual execution by labeling each edge or vertex with the number of times that it

is executed. In this case, tasks Contact_force and Loop_contact_neighbor (which con-

stitute the Contact phase) are executed Num_Elements*Num_iterations times and each

phase is executed Num_Iterations times over the entire run, where Num_Iterations is

obtained by profiling the run.

So far, the exact task sequence in the codes traversal of the CFG is not recoverable from

the profile counts. For example, Figure 5-5 does not tell us exactly how many times task

Contact_force is executed within one iteration; it shows only total executions. Since the

157

task sequence can be extremely important to performance analysis, we further specify the

task sequence by defining the CFG hierarchically, as illustrated in Figure 5-7. This set of

CFGs collectively provides the same control information as the CFG shown in Figure 5-5, yet

each CFG is now a directed acyclic graph (DAG) that contains no multiple-vertex cycles.

While decomposing the CFG into a set of DAGs disambiguates some of the control flow, condi-

tional statements, such as IF-THEN-ELSE, are still difficult to model unless trace informa-

tion is available. For example, task Update_material can be further divided into two tasks

Update_plastic and Update_elastic that model the subroutines called in the IF-THEN-

ELSE statement. The CFG at this level is shown in Figure 5-8, whose actual flow depends on

Type(i). We have two ways to address this issue: (1) record the sequence of outcomes of the

conditional statement by tracing the application, or (2) model the conditional statement as a

task with nonuniform workload and associate the task with a function. We model the IF-

THEN-ELSE statement in CRASH as one task, Update_material, with the second

approach, as shown in Figure 5-7. The workload of Update_material is now a function of

Type(i). The workload is further defined in the weight distribution module (Section 5.2.5).

Figure 5-5: A Control Flow Graph for CRASH.

Initialization

Contact_force

Loop_contact_neighbor

Update_material

C1 – 1

1

C1 = Num_Iterations
C2 = Num_Elements × Num_Iterations

C2 – C1

C2 – C1C2

C2

1

1

158

5.2.2.2 Control Structures

We use control structures to specify the control flow in AML. Figure 5-9 shows a control

flow module for CRASH specified by control structures that define the control flow hierarchi-

cally. Each control flow hierarchy is defined as a program construct, such as program, loop,

and complex. The program constructs currently supported in AML are defined below.

Figure 5-6: The Tasks Defined for CRASH

(1)

(2)

(3)

(4)

(1) Initialization
(2) Contact_force
(3) Loop_contact_neighbor
(4) Update_material

program CRASH

integer Type(Max_Elements), Num_Neighbors (Max_Elements)
integer Neighbor(Max_Neighbor_per_Elements, Max_Elements)
real_vector Force(Max_Elements),Position(Max_Elements),

Velocity(Max_Elements)
real t, t_step
integer i,j,type_element

call Initialization

c Main Simulation Loop
t=0

c First phase: generate contact forces
100 do i=1,Num_Elements

 Force(i)=Contact_force(Position(i),Velocity(i))

 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
200 do i=1,Num_Elements

 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_elastic(i, Position(i), Velocity(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100
end

159

Figure 5-7: A Hierarchical Control Flow Graph for CRASH.

Initialization

Contact_force

Loop_contact_neighbor

Loop_Main_simulation

Level 0:

Level 1:
Loop_Contact_phase

Update_material

Level 2:

Program

Loop_Main_simulation

Loop_Contact_phase

Num_Iterations - 1

Num_Elements - 1

Num_Elements - 1

1

1

1

Figure 5-8: An IF-THEN-ELSE Statement Represented in a CFG.

Update_elastic

Beginning of Update_material

End of Update_material

Update_plastic

160

Definition 3. Complex: A complex, or complex task, C=T1->T2-> ... ->TN is an arbitrarily

defined sequence of tasks Ti, i=1..N, that contains no branch instructions that jump out of

the complex (except perhaps for the last instruction in TN) no branch targets that can be

hit from branch instructions outside the complex (except perhaps for the first instruction

in T1), and Ti must follow Ti-1, for 2≤i≤N.

Definition 4. Loop: A loop L=C1->C2-> ... ->CN is a sequence of complexes Ci, i=1..N, where

each Ci is an instance of the loop body, i.e. Ci, i=1..N, all share the same code. Ci contains

no branch instructions that jump out of the loop (except perhaps for the last instruction in

CN), and no branch targets that can be hit from branch instructions outside the loop

(except perhaps for the first instruction in C1). The loop count, N, is a non-negative inte-

ger, which specifies the number of times that the loop body is executed during runtime.

Note that an irregular loop may contain branches anywhere within the loop or may allow

branches to jump into the middle of the loop body. Irregular loops are not accepted by this

definition, but can be transformed into regular loops (many compilers do this). Details of

such a transformation are beyond the scope of this dissertation. In this chapter, we

assume that the loops have been transformed into regular loops, as defined here.

Definition 5. Program: A program is a complex that contains all the tasks executed in the

application.

program CRASH:
task Initialization
loop Main_simulation;

loop Main_simulation: Num_Iterations
complex Contact_phase
complex Update_phase;

complex Contact_phase:
loop Contact_element;

loop Contact_element: Num_Elements
task Contact_force
task Loop_contact_neighbor;

complex Update_phase:
loop Update_element;

loop Update_element: Num_Elements
task Update_material;

Figure 5-9: A Control Flow Module for CRASH.

Line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

161

Note that current version of AML does not support conditional statements. This is

because (1) scientific/engineering applications are often loop-based, where conditional state-

ments do not frequently appear in high-level control flow, (2) knowing exact flow of condi-

tional statements would require tracing, which adds complexity to the modeling, and (3) we

model the conditional statements in our target applications quite well with the nonuniform

workload approach mentioned previously.

The tasks or program constructs defined in a hierarchy are executed in order, as if they

were in a Fortran or C program. The control flow module in Figure 5-9 should be relatively

simple for a Fortran or C programmer to read or write:

• “Program” corresponds to the program statement in Fortran, which points to the begin-

ning of the program. Lines 1-3 define program CRASH, which contains task Initial-

ization and loop Main_simulation.

• In lines 4-6, loop Main_simulation contains two phases, Contact_phase and

Update_phase, each of which is a complex, as defined in lines 9 and 16, respectively. In

line 5, Num_Iterations specifies how many times this loop is executed.

• complex Contact_phase and complex Update_phase are used here for illustrative

purposes. Usually, a complex contains more than one program construct or task.

Figure 5-10 maps the source code of CRASH to the program constructs defined above in

Figure 5-9. The tasks are defined in Section 5.2.2.4.

5.2.2.3 Modeling the Control Flow in a SPMD Parallel Execution

In a Single-Program-Multiple-Data (SPMD) program, the same code is performed by mul-

tiple processors, which carry out their computations on different data subdomains. In our

application modeling, we model SPMD parallelization by specifying the domain decomposi-

tion that is associated with the tasks.

Figure 5-11 shows a CFG that represents a 2-processor execution of the two DOALL loops

in CRASH-SP. Such a CFG can easily be derived from the sequential CFG (Figure 5-7) by rep-

licating the parallelized tasks and associating each instance with a distinct subdomain.

162

Therefore, for a SPMD application, a sequential CFG should be sufficient to specify the con-

trol flow regardless of the number of processors that are used in the execution.

Now that we are dealing with sub-tasks that are executed in parallel, we must also model

the scheduling of these sub-tasks and the synchronization among them. The scheduling and

synchronization shown in Figure 5-11 for DOALL loops are quite common and simple. The

control dependencies (arrows) in the CFG represent the scheduling constraints, and the syn-

chronization operations (in this case, the barriers) further enforce the execution order. Sub-

program CRASH

integer Type(Max_Elements), Num_Neighbors (Max_Elements)
integer Neighbor(Max_Neighbor_per_Elements, Max_Elements)
real_vector Force(Max_Elements),Position(Max_Elements),

Velocity(Max_Elements)
real t, t_step
integer i,j,type_element

call Initialization

c Main Simulation Loop
t=0

c First phase: generate contact forces
100 do i=1,Num_Elements

 Force(i)=Contact_force(Position(i),Velocity(i))

 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
200 do i=1,Num_Elements

 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_elastic(i, Position(i), Velocity(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100
end

Figure 5-10: Program Constructs and Tasks Modeled for CRASH

program: CRASH(1)

loops: Main_simulation(3), Contact_element(6), Update_element(7)

complexes: Contact_phase(4), Update_phase(5)

tasks: Initialization(2), Contact_force(8), Loop_contact_neighbor(9),

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Update_material(10)

163

tasks within the DOALL loops, however, can be executed in any order because there is no con-

trol dependence or synchronization among those sub-tasks.

In addition to domain decomposition and scheduling/synchronization, each task is associ-

ated with a data dependence module and a weight distribution module. The data dependence

and weight distribution modules of a task are used in conjunction with its domain decomposi-

tion module to specify the input/output data and the computational weight for the sub-tasks

generated for that task in a SPMD parallel execution.

Figure 5-11: A Control Flow Graph for a 2-Processor Parallel Execution
in CRASH-SP.

Contact_force

Update_material

Contact_force

Barrier (check-in)

Barrier (check-out)

Update_material

Barrier (check-in)

Barrier (check-out)

Loop_contact_neighbor Loop_contact_neighbor

i∈P2 i∈P1

i∈P1 i∈P2

i∈P1 i∈P2

P1={1,2,...Num_Elements/2}
P2={Num_Elements/2+1,...Num_Elements}

164

5.2.2.4 Defining the Tasks

Figure 5-12 shows how we use AML to associate the tasks in CRASH with the domain

decomposition, data dependence, weight distribution and scheduling policy modules for mod-

eling the behavior of CRASH-SP executed with 4 processors. Lines 1-5 generally define Task

Initialization: The first argument (line 2) specifies its data domain (DD_1), the second

argument specifies its data dependence (Dat_Init), the third argument specifies its work-

load (Wei_Init), and the fourth argument specifies its scheduling policy (Serial). These

modules are discussed in Sections 5.2.3 through 5.2.5. Before looking into these modules indi-

vidually, we would like to further discuss the notion of workload decomposition and non-uni-

form workload.

The domain decomposition module decomposes the domain of a task. The way in which

most programs decompose the domain is by grouping the loop indices, or associating a func-

tion with the loop indices to identify the workload. For example, the DOALL loops in CRASH-

Figure 5-12: Associating Tasks with Other Modules for
Modeling CRASH-SP on 4 Processors.

Task Initialization:
DD_1
Dat_Init
Wei_Init
Serial;

Task Contact_force:
DD_4
Dat_Cforce
Wei_Cforce
Consecutive(4);

Task Loop_contact_neighbor:
DD_4
Dat_Cneighbor
Wei_Cneighbor;
Consecutive(4);

Task Update_material:
DD_4
Dat_Update
Wei_Update;
Consecutive(4);

Line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

165

SP divide the loop indices into N groups, where N is the number of processors. On the other

hand, CRASH-SD uses a function (actually an array which serves as a look-up table),

global_id(ii,d), to identify the ii-th component of the workload in subdomain d. The

domain decomposition module describes how these subdomains are mapped into the indices.

The workload in a loop can be uniformly distributed (homogenous) or non-uniformly dis-

tributed (heterogeneous) over the loop indices. Extracting the workload function and utilizing

the workload function to calculate the workload of each sub-task is a focus in MDA for study-

ing several important problems, such as load imbalance and irregular communication pat-

terns. A non-uniform workload distribution often results due to a conditional statement (e.g.

Update_material) or variable loop counts (e.g. Loop_contact_neighbor).

5.2.2.5 Scheduling of Sub-Tasks

A scheduling policy is associated with a task to model the scheduling of the sub-tasks

decomposed from that task. Currently, the following scheduling policies are implemented in

MDS for scheduling M sub-tasks on N processors, where the sub-tasks are labeled T1..TM,

processors are labeled 0..N-1, and M=k*N for simplicity:

• Serial: all the sub-tasks are assigned to processor 0.

• Consecutive(N): processor p is assigned {Tp*k+i | i=1..k}.

• Interleaving(N): processor p is assigned {Tp+1+i*N | i=0..k-1}.

• List: the mapping is defined by a M-ary list, whose i-th element specifies the processor that

the i-th task is assigned to.

One of the above scheduling policy specifications can be assigned to each task. For exam-

ple, in Figure 5-12, the sequential task Initialization is attributed with Serial, while

the DOALL loops (Contact_force, Loop_contact_neighbor, and Update_material) are

attributed with Consecutive(4). Additional scheduling policies, such as self-scheduling,

could easily be incorporated in future AML/MDS versions.

Note that the number of sub-tasks generated for a task depends on the domain decomposi-

tion. For example, in the contact phase of CRASH-SD (Figure 3-4), the data domain is explic-

166

itly decomposed into Num_Subdomains subdomains, which maps the Num_Elements loop

index values into Num_Subdomains sub-tasks, and then a DOALL statement schedules these

sub-tasks on the processors. Another way to model this scheduling process is to list the pro-

cessor assignment for each iteration in the DOALL loop, without grouping the iterations in

the domain decomposition. These two ways should produce the same results in performance

modeling, so it is up to the users to choose which way they wish to model their applications.

5.2.2.6 Synchronization

Three mechanisms are provided in AML to model the synchronization schemes that are

most commonly found in a parallel application: (1) DOALL, (2) barriers, and (3) point-to-point

synchronization. Since a DOALL loop implicitly uses barriers at the beginning and the end,

the synchronization invoked in the DOALL loops in CRASH-SP can be modeled in AML with

DOALL statements or barriers as shown in Figure 5-13(a) and (b), respectively.

To model point-to-point synchronization, the user specifies the pairs of sub-tasks that

require synchronization. Our example in Figure 5-14(b) shows the use of point-to-point syn-

loop-doall Contact_element: Num_Elements
task Contact_force
task Loop_contact_neighbor;

loop-doall Update_element: Num_Elements
task Update_material;

Figure 5-13: Modeling the Synchronization for CRASH-SP.

Line
1
2
3
4
5
6

(a) Using DOALL Statements

loop Contact_element: Num_Elements
barrier-check-in;
task Contact_force
task Loop_contact_neighbor;
barrier-check-out;

loop Update_element: Num_Elements
barrier-check-in;
task Update_material;
barrier-check-out;

Line
1
2
3
4
5
6
7
8
9
10

(b) Using Barrier Statements

167

Figure 5-14: Modeling the Point-to-Point Synchronization, an Example.

loop Contact_element: Num_Elements
ptp 1;
task Contact_force
task Loop_contact_neighbor;

loop Update_element: Num_Elements
ptp 2;
task Update_material;

ptp 1: task Contact_force <- task Update_material
(1,1),(1,2),
(2,1),(2,2),(2,3),
(3,2),(3,3),(3,4),
(4,3),(4,4);

ptp 2: task Update_material <- task Loop_contact_neighbor
(1,1),(1,2),
(2,1),(2,2),(2,3),
(3,2),(3,3),(3,4),
(4,3),(4,4);

Line
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

(b) Using Point-to-point Synchronization Statements

1 2 3 4

(a) Control Dependencies

1 2 3 4

1 2 3 4

1 2 3 4

Contact_force

Loop_contact_neighbor

Update_material

Update_material

(from previous iteration)
ptp 1

ptp 2

168

chronization to model the control flow in Figure 5-14(a). Point-to-point synchronization opera-

tions, ptp 1 and ptp 2, are placed in lines 2 and 7, respectively, where synchronization is

required. ptp 1, defined in lines 10 to 14, synchronizes the sub-tasks in Contact_force

with the prior sub-tasks in Update_material. Although a synchronization point can appear

at either the beginning or the end of a sub-task, a synchronization pair (u,v) synchronizes the

beginning of u with the end of v.

5.2.3 The Data Dependence Module

The data dependence module specifies the data dependence of each elementary compo-

nent of the workload (e.g. the i-the iteration of a loop) by listing the input and output data ele-

ments of that component. For example, to perform task Contact_force for a particular

index value i, Position(i) and Velocity(i) are read and Force(i) is written. To

express such data dependence, we can use the following statement in AML:

Force(i) <- Position(i), Velocity(i);

The output is expressed on the left-hand side of the arrow, and the input is expressed on the

right-hand side. There may be multiple variables listed on each side.

Modeling the data dependence for tasks with a heterogeneous workload is more compli-

cated, yet their data dependence functions can be often expressed quite straightforwardly

using AML, as long as the data dependence function is known. For example, the data depen-

dence function for task Loop_contact_neighbor can be expressed by the following state-

ment:

Force(i) <- Force(i), Position(i), Velocity(i),

Position(Neighbor(1..Num_Neighbors(i),i),

Velocity(Neighbor(1..Num_Neighbors(i),i);

In Section 5.2.1, we mentioned that some data structures can be bound with values. Bind-

ing values to variables can be carried out by binding statements in a data dependence module,

such as:

Num_Neighbors(1) = 3;

Num_Neighbors(2) = 4;

...

169

which are used in the data dependence module of task Initialization. When task Ini-

tialization is referenced in MDS, these binding statements are carried out.

To summarize the above discussion, we show an example data dependence module for

CRASH in Figure 5-15. Note that the same module applies to CRASH-SP or CRASH-SD since

the parallelization in those two codes does not affect the data dependence.

The user can choose to provide a more precise data access sequence by defining the tasks

in a more fine-grain fashion. For example, the functions Contact_force(),

Propagate_force(), Update_Plastic(), and Update_Elastic() may all be modeled in

further detail. More precise modeling may reveal some details in the data access pattern, such

as multiple accesses to one data item. For example, Position(i) may be referenced multiple

times for computing Force(i) in Contact_force(). However, while more detailed model-

ing can produce more accurate results, we also think that unnecessary information should be

filtered out to reduce the complexity of model-driven analysis. The following few guidelines

are suggested:

Dat_Init:
Num_Elements = 100000; Plastic=1; Elastic=2;
Num_Neighbors(1) = 3;
Num_Neighbors(2) = 4;
... (more value binding statements omitted)

Dat_Cforce:
Force(i) <- Position(i), Velocity(i);

Dat_Cneighbor:
Force(i) <- Force(i), Position(i), Velocity(i),

Position(Neighbor(1..Num_Neighbors(i),i),
Velocity(Neighbor(1..Num_Neighbors(i),i);

Dat_Update:
Position(i), Velocity(i) <- Position(i),

Velocity(i), Force(i);

Figure 5-15: A Data Dependence Module for CRASH.

170

• Local or read-only variables which are of no interest in data flow analysis should be

removed from the data dependence module. Generally, index variables are not modeled

because they usually reside in registers. Read-only data may be removed from the module

for data flow analysis, yet they can affect working set analysis.

• Detailed modeling of the data access sequence can be critical for analyzing the perfor-

mance of the processor cache. A precise data access sequence is useful for exposing the con-

flict and capacity misses, while a less precise sequence may be sufficient for analyzing the

data flow and working set.

• As discussed in Section 2.4.4, the amount of optional communications (e.g. false sharing)

for one shared-memory block depends on the number of accesses and the access sequence

to the block. Thus, modeling the data access sequence precisely helps MDS estimate

optional communications more accurately, yet the required communication as well as the

locations that cause false sharing can be identified with much less a precise sequence.

5.2.4 The Domain Decomposition Module

For a task to be processed efficiently by N processors in parallel, it needs to be decom-

posed into at least N sub-tasks. For a task that consists of M (M ≥ N) elementary components

of independent workload, the decomposition amounts to grouping these components into N

sub-tasks. In practice, this grouping is typically performed in one of two ways:

1. by partitioning the code (e.g. the iteration space in an SPMD code) into N sub-tasks, and

then deciding which elements of the data domain are to be associated with each sub-task

(i.e. which data are local and which require a remote reference if needed), or

2. by partitioning the data domain into N subdomains using some domain decomposition

algorithm, and then associating each workload component of the code with one subdomain

(usually with an “owner updates” rule which requires that a sub-task must be associated

with the subdomain that contains the elements that it updates).

Sometimes, we overdecompose the domain to create more than N sub-tasks so that the

processors have more freedom in scheduling the sub-tasks. In some cases, when the parallel-

ism is insufficient (M < N), or limited parallelization is preferred, less than N sub-tasks (sub-

domains) are created and some processors are simply left idle.

171

Figure 5-16 shows two decomposition schemes for CRASH-SP: DD_1 and DD_4. DD_1 rep-

resents the domain decomposition in a sequential region which assigns all the loop iteration

space to subdomain 0. DD_4 decomposes the domain into four disjoint, equally sized subdo-

mains by partitioning i in a linear consecutive fashion.

Several common decomposition schemes for partitioning a one-dimensional domain can be

modeled in AML, including consecutive, interleave, and list, as illustrated in Figure 5-17.

These decomposition schemes are defined below, for decomposing a one-dimensional space

1..M to subdomains 0..N-1 (assuming M=k*N for simplicity):

Decomposition DD_1
 Number_of_Subdomains 1
 Subdomain 0
 i 1:Num_Elements
end Decomposition

Decomposition DD_4
 Number_of_Subdomains 4
 Subdomain 0
 i 1:Num_Elements/4
 Subdomain 1
 i Num_Elements/4+1:Num_Elements*2/4
 Subdomain 2
 i Num_Elements*2/4+1:Num_Elements*3/4
 Subdomain 3
 i Num_Elements*3/4+1:Num_Elements
end Decomposition

Figure 5-16: An Example Domain Decomposition Module for CRASH-SP.

1

Num_Elements

Num_Elements/4

Num_Elements*2/4

Num_Elements*3/4

Num_Elements/4+1

Num_Elements*2/4+1

Num_Elements*3/4+1

subdomain 0

subdomain 1

subdomain 2

subdomain 3

Decomposition DD_4

subdomain 0

1

Num_Elements

Decomposition DD_1

i

i

172

• Consecutive (default): subdomain j is assigned {j*k+i | i=1..k}.

• Interleave: subdomain j is assigned {j+1+i*N | i=0..k-1}.

• List: the mapping is specified by exhaustively listing the elements that are assigned to

each subdomain.

Multiple decomposition schemes can be combined to decompose a multi-dimensional

domain. A list decomposition scheme is used to model the domain decomposition in CRASH-

SD using the information generated by the domain decomposition algorithm, as illustrated in

Figure 5-18. This list is generated and used similarly to array global(ii,d) in CRASH-SD.

Figure 5-17: Domain Decomposition Schemes Supported in MDS.

1

2

3

0
1
2
3

0

1
2
3

0

1
0
1

2

3
2
3

0

consecutive 2-dimensionalinterleave

0 1

2 3

(consecutive in each dim.)
list

Decomposition DD_4
 Number_of_Subdomains 4
 Subdomain 0
 i {1,2,3,6}
 Subdomain 1
 i {4,5,7,8}
 Subdomain 2
 i {9,10,12,14}
 Subdomain 3
 i {11,13,15,16}
end Decomposition

Figure 5-18: An Example Domain Decomposition for CRASH-SD.

subdomain 0

subdomain 1

subdomain 3

subdomain 2

1

2
6

3

4

5
8

7
11

13

16

15
10

9
12

14

173

5.2.5 The Weight Distribution Module

The weight for a task is normally defined as the time required for performing the compu-

tation in the task. The weight distribution module of a task defines the weight distribution

over the domain for the task.

Figure 5-19 shows a weight distribution module for CRASH/CRASH-SP/CRASH-SD,

where we specify the weight distribution function for each task. For task Initialization,

we treat the task as one unit and assign it a weight of 7.3 ms (7.3e-3 seconds). Since this is a

serial task, we simply specify its execution time. For parallel tasks, we specify the weight for

each instance of the loop index i.

Direct measurement of the execution time for one iteration of a loop can be difficult, since

the loop body can be relatively small and the instrumentation required to time the loop body

individually can be very intrusive to the execution. Most profiling tools report the total execu-

tion time for the loop, but not for individual iterations. In case individual iterations are diffi-

cult to measure, a first-order-approximation can be made by averaging the total execution

time. For example, assuming that the load is uniformly distributed in this case, we use the

average execution time, 4.075 µs (4.075e-6 seconds) per iteration, to specify the weight for

task Contact_force in Wei_Cforce.

Wei_Init:
weight 7.3 ms;

Wei_Cforce:
for each i {weight 4.075 us};

Wei_Cneighbor:
for each i {weight Num_Neighbors(i)*1.398 us};

Wei_Update:
for each i {weight $WC(Type(i))};

$WC(Plastic)=5.7 us;
$WC(Elastic)=7.7 us;

Figure 5-19: An Example Workload Module for CRASH/CRASH-SP/CRASH-SD.

174

For loops where load is non-uniformly distributed, estimating the weights may require

some heuristics. While source code analysis may not accurately predict the weight, it can be

useful for classifying the workload. For example, for each i, the workload of task

Update_material depends on Type(i). It is logical to assume that there are two weight

classes, since there are two types of material in this example application. These two weight

classes are defined as $WC(Plastic) and $WC(Elastic) in the weight distribution module.

After the weight classes are identified, systematic methods can be used to estimate the

weights for performing the task for each type of material by profiling the application with sev-

eral sets of input data, as demonstrated in [30]. Here, $WC(Plastic) and $WC(Elastic) are

estimated to be 5.7 and 7.7 µs, respectively.

It is a reasonable guess that the workload of task Loop_contact_neighbor roughly

depends on the number of neighbors that the element interacts with. Assuming that the total

time of executing task Loop_contact_neighbor for all elements is 1.398 seconds, and the

total number of neighbors is 1,000,000, the average time required to perform the calculation

for one neighbor is 1.398/1,000,000 = 1.398 µs. Therefore, the weight function in

Wei_Cneighbor is specified as Num_Neighbors(i)*1398.

5.2.6 Summary of Application Modeling

In this section, we have discussed how to generate modules using AML to model an appli-

cation. Although these modules are related, one module can often be independently generated

or modified without affecting the other modules. This is important for meeting our goal of

accepting results from different sources of performance assessment. We also believe that sep-

arated modules are easier to access, and helps facilitate our development of model-building

and model-driven analysis tools.

We would like to point out that the application model can be very fine detailed, with the

tasks defined at basic block level or even instruction level. However, overly detailed models

are overkill for performance modeling and add cost to MDA. Therefore, in some cases, users

may consider merging tasks, such as merging task Contact_force and task

Loop_contact_neighbor in the above examples. The level of abstraction is a subjective

choice of the user. Our application models illustrated in this section are abstracted at a rela-

tively high level, yet this level of abstraction suffices to reveal important performance prob-

lems and investigate performance tuning in the manner developed in the previous chapters.

175

5.3 Model-Driven Performance Analysis

MDS is a performance analyzer that derives performance information for an application

by simulating the application’s model with a machine model. MDS is a model-driven simula-

tor that executes the tasks in the application model as if executing a Fortran or C program.

Figure 5-20 shows the performance analyses that are carried out in MDS. Most of the tech-

niques used in these analyses have been discussed in Chapter 2, because we selectively ported

a few performance assessment techniques from K-LCache, CIAT/CDAT, CXpa, and CXbound

into MDS. Therefore, the details of MDS are not discussed in this section. In this section, we

present a machine model and explain the generation scheme of MDS.

Figure 5-20: Model-driven Analyses Performed in MDS.

layout
Machine &data

dependence Application
Models

control
flow

weight
distribution

machine
model

domain

communication
analysis

analysis

workload
analysis

cache
analysis

working set &

Load Imbalance
Timing

Synchronization Cost
Scheduling Cost

Data Flow

Communication Pattern

Cache Misses

MDS

CXbound
analysis

Performance Bounds

decomposition

data flow

176

5.3.1 Machine Models

A machine model is needed by MDS to carry out machine-dependent analyses. MDS

accepts a fairly simplified machine description as its the machine model input. For example,

HP/Convex SPP-1000 is described as in Figure 5-21. Some minor changes in the processor

cache and the cache coherence protocol are made to model to the SPP-1600 (see Section 1.1.1).

This machine model incorporates the information that is collected from the machine specifica-

tions and the microbenchmarking results (see Tables 2-1, 2-2 and 2-3, Section 2.1).

MDS also accepts the machine configuration files for the CDAT trace-driven shared-mem-

ory machine simulation tool [38], but MDS only uses a subset of the CDAT machine configura-

tion parameters.

5.3.2 The Model-Driven Simulator

MDS follows the flow defined in the control flow module. When a task is executed, MDS

performs the operations required by the task according to the modules associated with the

task. MDS handles a task according to the following steps:

Processor_clock_cycle: 1e-8
Processor_data_cache_size: 1e6
Processor_data_cache_line_size: 32
Processor_data_cache_associativity: 1
Processor_data_cache_access_latency: 1e-8
Processor_instruction_cache_size: 1e6
Processor_instruction_cache_line_size: 32
Processor_instruction_cache_associativity: 1
Processor_instruction_cache_access_latency: 1e-8
Number_processors_per_hypernode: 8
Number_processors: 32
Local_memory_line_size: 64
Local_memory_read_access_latency: 5.54e-7
Local_memory_write_access_latency: 6.33e-7
Remote_memory_access_latency: 2e-6
Local_memory_size: 578e6
Global_memory_size: 272e6
CTI_cache_size: 166e6

Figure 5-21: An Example Machine Description of
HP/Convex SPP-1000 for MDS.

177

1. The domain decomposition module (Section 5.2.4) is used to group the iteration space into

sub-domains. The workload for one subdomain forms a sub-task.

2. The scheduling policy attribute (part of the control flow, see Section 5.2.2.5) of the task is

used to map each sub-task to one processor, say Pi, which is responsible for executing the

sub-task.

3. Find the sub-task’s data dependence statement in its data dependence module (Section

5.2.3) and mark the data read and/or written in the sub-task. The user can configure MDS

to perform the following inherent data analyses:

• Working set analysis: MDS calculates the volume of data accessed in the task.

• Data flow analysis: MDS records a Read-after-Write (RAW) transaction if the subtask

reads a data item which was a written by a previous sub-task.

4. The user can configure MDS to analyze the data accesses with memory addresses gener-

ated using the (sub)task’s data layout module. Using the addresses, MDS can perform the

following functions:

• Memory reference trace generation: MDS outputs the addresses and the types of the

data references in the task to the trace file associated with Pi.

• Coherence communication analysis: a shared-memory simulation is carried out to

identify the memory references that would cause interprocessor communications

under the infinite-cache assumption, as discussed in Section 2.4.

• Communication latency analysis: the communication latency required for the

(sub)task is estimated based on the distance and type of communications, as charac-

terized in the machine model.

5. The weight distribution module (Section 5.2.5) is used to calculate the computational

weight for the sub-task.

6. The execution time counter for Pi, denoted Texec(Pi) is updated by adding the computa-

tional weight and the communication latency of the (sub)task to the previous Texec(Pi).

When a synchronization point is reached, MDS finishes executing all the (sub)tasks that

are prior to the synchronization and may selectively execute independent (sub)tasks if a

178

relaxed synchronization is used. At the synchronization point, MDS calculates a few time

stamps for the synchronization:

1. For each processor, Pi, in the group of processors, {P0, P1,..PN-1}, that are involved in the

synchronization, the time when Pi left its last synchronization point is denoted as

Tlast_sync(Pi).

2. The busy time for Pi, between this synchronization point and the last synchronization on

Pi, is calculated by subtracting Tlast_sync(Pi) from Texec(Pi), i.e.

Tbusy(Pi) = Texec(Pi) - Tlast_sync(Pi).

3. The time that the last processor in {P0, P1,...,PN-1} enters the synchronization, denoted as

Tenter_sync, is calculated as Tenter_sync = Max{Texec(Pi)|i=0..N-1}.

4. The idle time (synchronization wait time, as defined in Section 3.6) for Pi is estimated by

subtracting Texec(Pi) from Tenter_sync, i.e. Tidle(Pi) = Tenter_sync - Texec(Pi).

5. The time that the synchronization is ended is estimated by adding the synchronization

cost (as defined in Section 3.6, denoted as Tsync_cost) to Tenter_sync, and this time is used to

update Tlast_sync(Pi), i.e. Tlast_sync(Pi) = Tenter_sync + Tsync_cost.

6. For a parallel region, i.e. a region between two barriers, MDS computes the load imbal-

ance by using the equation in (EQ 2), i.e. Load Imbalance = (Tmax-Tavg)/Tavg, where Tmax

= Max{Tbusy(Pi)|i=0..N-1} and Tavg = Σ{Tbusy(Pi)|i=0..N-1}/N.

MDS can generate a profile of the simulated performance by recording the computation

time, communication event counts and latency for each task, complex, or loop on each proces-

sor, as well as the load imbalance for each parallel region. Based on this profile, MDS calcu-

lates the parallel hierarchical performance bounds for the application, using the same

methodology that has been implemented in CXbound (Section 4.3).

5.3.3 Current Limitations of MDS

MDS is still in a preliminary development stage. While it is now capable of generating a

wide range of performance metrics, there is more work that can be done to improve the func-

tionality of MDS. In particular, MDS does not currently model the processor at all and does

not model the memory system in detail. In this section, we discuss how those features can

limit the use of MDS and how they could be modeled in the future.

179

5.3.3.1 Modeling the Processor

In our current performance modeling scheme, a processor model is not required because

the computation time (weight) is extracted from the application run by profiling. While this

approach provides an accurate and simple mechanism to extract the computation time, it also

results in two limitations of the model-driven analysis:

1. Less portability: Since profiling is required for modeling the weight distribution of an

application, accurate simulation of application performance for an arbitrary machine may

not be possible.

2. Inability to address detailed processor performance issues: Since instructions are not mod-

eled, MDS cannot analyze the instruction scheduling and possible overlapping of memory

access latency and instruction execution.

It is possible to model the computation workload of a task with the task’s instructions

extracted from its source or assembly code. MDS can be enhanced with a processor module

that estimates a task’s run time by simulating its instructions. However, extracting and sim-

ulating instructions would add considerable cost and complexity to the existing performance

modeling scheme.

5.3.3.2 Modeling the Processor Cache and Shared-Memory Network

For simplicity, the current MDS assumes that each processor has an infinite cache. In

addition, MDS assumes that contentions do not occur in accessing the shared memory. Conse-

quently, MDS tends to report communication overhead optimistically.

Currently, MDS can generate memory reference traces for the user to further analyze the

behavior of the processor caches and the shared-memory network with other trace-driven sim-

ulation tools. However, trace generation increases the run time of the performance modeling.

To improve the efficiency of modeling cache and shared-memory, we plan to integrate

mlCache and CDAT into a future version of MDS.

180

5.3.3.3 Serialized Memory Access Patterns

MDS currently estimates the communications in a parallel region based on a serialized

memory access pattern. When each parallel region is simulated, MDS finishes simulating the

memory accesses for one processor before it starts to simulate the memory accesses for the

next processor. In this fashion, MDS captures the required communications and some of the

optional communications in the execution (required and optional communications are defined

in Section 2.4.4).

In an undisturbed parallel execution, the memory accesses from different processors are

most likely to be interleaved. Therefore, interleaving the memory accesses from different pro-

cessors may form more realistic memory access patterns for MDS, which is relevant for accu-

rately simulating the effect of sharing.

5.4 A Preliminary Case Study

In this section, we illustrate the concept of model-driven analysis by using AML and MDS

to analyze the performance of different versions of CRASH running on the HP/Convex SPP-

1600 using four processors. We show that the use of models in our model-driven approach

facilitates the selection, the application, and the evaluation of a series of code modifications.

Head-to-head comparisons with CXpa shows that MDS yields a more comprehensive and

deterministic performance evaluation that is more useful for performance tuning.

For simplicity of discussion, the input is a 2-D structured mesh that consists of 16 ele-

ments (Num_Elements=16), as shown in Figure 5-22. The main simulation loop is executed

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

Figure 5-22: A Sample Input for CRASH.

plastic element

elastic element

181

10,000 times in each run (Num_Iterations=10000). Interestingly, using such a simple input

does not reduce the performance problems of CRASH; on the contrary, it raises several prob-

lems, such as imprecise CXpa profiling and synchronization costs, that may be less obvious or

less significant in a CRASH run with a much larger input. On the other hand, some opportu-

nities for small improvements highlighted by MDS analysis of this example may result in

much larger improvements when running on more processors with larger data sets.

In Section 5.4.1, we describe the modeling of three basic versions of CRASH, CRASH

(referred to as CRASH-Serial hereafter), CRASH-SP, and CRASH-SD. In Section 5.4.2, we

characterize the performance of these three versions using MDS and compare the results with

their CXpa profiles. In Section 5.4.3, CRASH is further tuned by improving its data layout,

fixing workload-thread assignment, and reducing the number of synchronization barriers.

Section 5.4.4 summarizes the case study.

5.4.1 Modeling CRASH-Serial, CRASH-SP, and CRASH-SD

In Section 5.2, we have already shown the modules that we use to model CRASH-Serial,

i.e. the data layout (Figure 5-4), control flow (Figure 5-9), data dependence (Figure 5-15), and

weight distribution (Figure 5-19) modules. Since CRASH-Serial is a serial code, its domain

decomposition module has only one subdomain consisting of the entire domain. Besides the

weight distribution module, each of the above modules can be created manually in a straight-

forward fashion by a programmer who is familiar with the code.

The generation of the weight distribution module requires profiling the run time of

CRASH-Serial. In Section 5.4.1.1, we describe how we use CXpa profiles to estimate the

weight distribution for the tasks in CRASH-Serial.

Domain decomposition is what essentially distinguishes CRASH-Serial, CRASH-SP, and

CRASH-SD. In Section 5.4.1.2, we discuss the domain decomposition schemes in these codes.

5.4.1.1 Acquiring the Weight Distribution Functions for CRASH-Serial

To acquire the weight function for a task, the run time for the task needs to be measured.

We use CXpa to profile the run time for three major parts of the code, initialization,

182

contact_phase, and update_phase, as shown in Table 5-1. The run time dilation due to the

CXpa instrumentation is about 0.3 seconds (11%), primarily because the contact_phase and

update_phase are iterated and profiled 10,000 times. The execution time for each iteration

is relatively short with the small input data set used in this case study.

Further profiling the routines within the “do i=1,Num_Elements” loops yields excessive

run time dilation. Consequently, we cannot directly extract the weight for each individual

task within the phases. Instead, we estimate the weights using the following heuristics:

1. To separate the run time between task Contact_force and task

Loop_contact_neighbor, we modify the code to skip the execution of task

Loop_contact_neighbor. The profiled run time of the contact_phase for this modi-

fied code is 0.652 seconds, which should be approximately the run time for task

Contact_force, and the run time of task Loop_contact_neighbor is approximately

1.323 minus 0.652, which is 0.671 seconds.

2. Assuming that the weight in task Contact_force is uniformly distributed over the ele-

ments, the weight for carrying out task Contact_force per element per iteration is

approximately 0.652/16/10000 seconds = 4.075 µs, i.e. Wei_Cforce=4.075 us1.

3. Assuming that the weight for carrying out task Loop_contact_neighbor for element i

is proportional to Num_neighbors(i), the weight for carrying out task

Loop_contact_neighbor per neighbor per iteration is approximately

1. We use “us” instead of µs to refer to microsecond in the weight distribution modules.

Program Region Execution
Count

CPU Time
(sec.)

% of Total
CPU Time

Initialization 1 0.00731 0.3

Contact_phase 10000 1.323 54.6

Update_phase 10000 1.092 45.1

Total N/A 2.422 100

Table 5-1: A Run Time Profile for CRASH

183

0.671/(ΣNum_neighbors(i),i=1..16)/10000 seconds = 1.398 µs,

where (ΣNum_neighbors(i),i=1..16) = 48.

That is, Wei_Cneighbor=1.398 us*Num_neighbors(i).

4. To identify the weights for Update_Plastic() and Update_Elastic(), we run the

code with two sets of inputs. The elements of input-1 are all plastic, and the elements of

input-2 are all elastic. By profiling the run time of CRASH-Serial with these two inputs,

we obtain the run time of update_phase: 0.912 and 1.232 seconds for input-1 and input-

2, respectively. Thus, the weight for carrying out Update_Plastic() per element per

iteration is approximately 0.912/16/10000 seconds = 5.7 µs, and the weight for carrying

out Update_Elastic() per element per iteration is approximately 1.232/16/10000 sec-

onds = 7.7 µs. That is,

Wei_Update=5.7 us if Type(i)=Plastic;

or Wei_Update=7.7 us if Type(i)=Elastic.

The above results were implemented in the weight distribution module (Figure 5-19)

illustrated in Section 5.2.5.

5.4.1.2 Domain Decomposition Schemes for CRASH-Serial, CRASH-SP, and

CRASH-SD

Since CRASH-Serial is a serial code, its domain decomposition module has only one sub-

domain consisting of the entire domain, as shown in Figure 5-23(a). To be executed on four

processors, the domains of CRASH-SP and CRASH-SD are each partitioned into 4 subdo-

mains using decomposition scheme DD_4A and DD_4B respectively, as shown in Figure 5-

23(b) and Figure 5-23(c).

Each processor will be scheduled to execute the computation for one subdomain. For bet-

ter performance, the processor-subdomain mapping should remain fixed during the entire run

(i.e. 10,000 iterations), in order to minimize unnecessary communication overhead due to sub-

domain migration (see Action 3 in Section 3.3.1). Presumably, processor 0 executes subdomain

0, processor 1 executes subdomain 1, and so on.

DD_4A partitions the domain in a linear consecutive fashion, which is the default option

for most DOALL loops. The cut edges generate interprocessor communications. For example,

184

Figure 5-23: Decomposition Scheme Used in CRASH-Serial, SP, and SD.

subdomain 0
Decomposition DD_1
 Number_of_Subdomains 1
 Subdomain 0
 i 1:16
end Decomposition

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

subdomain 0
Decomposition DD_4A
 Number_of_Subdomains 4
 Subdomain 0
 i 1:4
 Subdomain 1
 i 5:8
 Subdomain 2
 i 9:12
 Subdomain 3
 i 13:16
end Decomposition

subdomain 1

subdomain 2

subdomain 3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

subdomain 0

Decomposition DD_4B
 Number_of_Subdomains 4
 Subdomain 0
 i {1,2,5,6}
 Subdomain 1
 i {3,4,7,8}
 Subdomain 2
 i {9,10,13,14}
 Subdomain 3
 i {11,12,15,16}
end Decomposition

subdomain 1

subdomain 2 subdomain 3

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(a) Domain Decomposition Scheme DD_1 (CRASH-Serial)

(b) Domain Decomposition Scheme DD_4A (CRASH-SP)

(c) Domain Decomposition Scheme DD_4B (CRASH-SD)

185

edges {(1,5),(2,6),(3,7),(4,8)} would generate communications between processors 0 and 1. Pro-

cessor 1 needs to read elements {1,2,3,4} from processor 0 and {9,10,11,12} from processor 2,

etc. In contrast, using DD_4B, each processor needs to read 2 elements from each of two other

processors. DD_4A thus results in an unbalanced communication pattern, since processors 2

and 3 are required to read more elements than processors 1 and 4, while DD_4B partitions the

domain in a symmetrical fashion, which should yield a more balanced communication pat-

tern, as well as less overall communication. This benefit will increase with larger data sets. In

the next section, we use MDS and CXpa to verify the above observations and speculations.

5.4.2 Analyzing the Performance of CRASH-Serial, CRASH-SP,
and CRASH-SD

5.4.2.1 Simulated Performance Reported by MDS

We simulate the performance of CRASH-Serial, CRASH-SP, and CRASH-SD by running

the three application models described in the previous section on MDS with an HP/Convex

SPP-1600 machine model. We selectively present some performance metrics of the simulated

performance in Tables 5-2 to 5-5, and discuss them below:

• Computation Time (Table 5-2): The total computation time remains the same for these

three versions. Note that the computation time is calculated by accumulating the weights

of the tasks that are executed in the simulated run.

• Communication Time (Table 5-3): The (required) communication time in CRASH-SD is less

than CRASH-SP, as we speculated in the previous section. However, MDS also reports

that some sharing of cache blocks occurs in CRASH-SD, which may cause extra (optional)

communications.

• Barrier Synchronization Time (Table 5-4): The barrier synchronization time is the time

that each processor spends in the barrier synchronization routine. In CRASH-SP and

CRASH-SD, there are four barriers per iteration, and the barrier synchronization time

accumulates to 1.164 seconds after 10,000 iterations. Note that MDS estimates the barrier

synchronization time based on the microbenchmarking results in [12]

186

Program Region
Computation Time (sec.)

CRASH-Serial CRASH-SP CRASH-SD

Initialization 0.00731 0.00731 0.00731

Contact_phase 1.323 1.323 1.323

Update_phase 1.092 1.092 1.092

Total 2.422 2.422 2.422

Table 5-2: Computation Time Reported by MDS.

Program Region
Communication Time (sec.)

CRASH-Serial CRASH-SP CRASH-SD

Initialization 0 0 0

Contact_phase 0 0.184 0.147

Update_phase 0 0.139 0.118

Total 0 0.322 0.265

Table 5-3: Communication Time Reported by MDS.

Program Region
Synchronization Time (sec.)

CRASH-Serial CRASH-SP CRASH-SD

Initialization 0 0 0

Contact_phase 0 0.582 0.582

Update_phase 0 0.582 0.582

Total 0 1.164 1.164

Table 5-4: Barrier Synchronization Time Reported by MDS

Program Region
Wall Clock Time (sec.)

CRASH-Serial CRASH-SP CRASH-SD

Initialization 0.00731 0.00731 0.00731

Contact_phase 1.323 1.003 0.957

Update_phase 1.092 0.925 0.906

Total 2.422 1.935 1.871

Table 5-5: Wall Clock Time Reported by MDS.

187

• Wall Clock Time (Table 5-5): The wall clock time report shows that CRASH-SD should run

faster than CRASH-SP, if optional communications were not of concern. However, the par-

allel speedup for both parallel versions is poor, only 1.252 for CRASH-SP and 1.294 for

CRASH-SD.

We are mostly concerned about the poor scalability in the parallel versions. The cause of

this poor scalability is primarily due to the high barrier synchronization cost relative to the

run time. The barrier synchronization time consists of about 60% of the wall clock time for the

parallel versions. This is a classic example of the conflict of interest between fine-grain paral-

lelization and synchronization cost; the percentage of synchronization overhead time should

decrease as subdomain size per processor increases. The ratio between the required communi-

cation time and the computation time is in the range of 10-13% for the parallel versions,

which is a significant, but less serious problem for this case.

Another way, and perhaps a better way, for novice programmers to visualize the perfor-

mance problems is to analyze the simulated performance using hierarchical performance

bounds. MDS reports hierarchical performance bounds for these three versions, as shown in

Figure 5-24 and Tables 5-6 and 5-7. We notice that the synchronization gaps are the main

Figure 5-24: Performance Bounds and Gaps Calculated for
CRASH-Serial, CRASH-SP, and CRASH-SD.

0

0.5

1

1.5

2

2.5

3

Ser SP SD

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

188

Performance Bounds
Time (sec.) (Percentage)

CRASH-Serial CRASH-SP CRASH-SD

I 2.422 (100%) 0.606 (25.7%) 0.606 (24.1%)

IP 2.422 (100%) 0.611 (25.9%) 0.611 (24.3%)

IPC 2.422 (100%) 0.692 (29.4%) 0.677 (27.0%)

IPCL 2.422 (100%) 0.764 (32.4%) 0.679 (27.0%)

IPCLM 2.422 (100%) 0.770 (32.6%) 0.707 (28.2%)

IPCLMS 2.422 (100%) 1.935 (82.2%) 1.871 (74.5%)

Actual Runtime 2.422 (100%) 2.355 (100%) 2.51 (100%)

Table 5-6: Hierarchical Parallel Performance Bounds (as reported by MDS)
and Actual Runtime (Measured).

Performance Bounds
or Gap

Time (sec.) (Percentage)

CRASH-Serial CRASH-SP CRASH-SD

I-Bound 2.422 (100%) 0.606 (25.7%) 0.606 (24.1%)

Parallelization-Gap 0 (0%) 0.005 (0.2%) 0.005 (0.2%)

Communication-Gap 0 (0%) 0.081 (3.4%) 0.066 (2.6%)

Load Balance-Gap 0 (0%) 0.072 (3.0%) 0.002 (0.1%)

Multiphase-Gap 0 (0%) 0.007 (0.3%) 0.027 (1.1%)

Synchronization-Gap 0 (0%) 1.164 (49.4%) 1.164 (16.4%)

Unmodeled Gap 0 (0%) 0.42 (17.8%) 0.639 (25.4%)

Table 5-7: Performance Gaps (as reported by MDS).

Working Set Analysis CRASH-Serial CRASH-SP CRASH-SD

Basic Working Set Characterization

1. Working Set, Accessed in the Program (Bytes) 1152 1152 1152

2. Working Set, Read from Memory (Bytes) 1152 1152 1152

3. Working Set, Written by Processor(s) (Bytes) 1152 1152 1152

Degree of Sharing

4. Working Set, Accessed by 1 Processor (Bytes) 1152 (100%) 384 (33%) 576 (50%)

5. Working Set, Accessed by 2 Processors (Bytes) 0 384 (33%) 384 (33%)

6. Working Set, Accessed by 3 Processors (Bytes) 0 384 (33%) 192 (17%)

7. Working Set, Accessed by 4 Processors (Bytes) 0 0 0

False-Sharing of Cache Blocks

8. Number of False-Shared Cache Blocks 0 0 12

Table 5-8: Working Set Analysis Reported by MDS

189

cause for the poor scalability in CRASH-SP and CRASH-SD. The communication (C) gap and

load balance (L) gap in CRASH-SD are smaller than in CRASH-SP, which conforms to our

expectations.

The results of working set analysis are shown in Table 5-8. We instruct MDS to analyze

three major data structures, Position, Velocity, and Force. Each of these data structures

is a 3-by-16 array of 8-byte real numbers. Three data structures form a working set whose size

is 1152 bytes (3*16*8*3).

In CRASH-SP, 33% (384 bytes) of the working set is accessed by one processor, 33% by

two processors, and 33% by three processors. A detailed report reveals that array Force is not

shared by multiple processors. But internal the boundary elements of the Position and

Velocity arrays are accessed by multiple processors. The domain decomposition in CRASH-

SP causes each element of subdomains 0 and 3 to be accessed by two processors, while each

element of subdomains 1 and 2 is accessed by three processors. On the other hand, for

CRASH-SD, we expect a lower degree of sharing than for CRASH-SP, since four elements of

the two shared arrays {1,4,13,16} are accessed by one processor only, and only four elements

{6,7,10,11} are accessed by three processors. MDS does in fact report a lower degree of sharing

in CRASH-SD.

However, MDS detects 12 cache blocks with false-sharing in CRASH-SD. False-sharing

occurs in CRASH-SD because data from different subdomains share the same cache lines. For

example, Position(i) is a vector consisting of three double real (8-byte) components, so it is

actually a 2-dimensional array that is declared as real*8 Position(3, Max_Elements)1.

The layout of array Position in the processor cache is shown in Figure 5-25. Postion(2)

and Position(3) share one cache line, although they are assigned to different subdomains,

0 and 1 respectively. In all, four cache blocks are shared by different subdomains of Posi-

tion. The same false-sharing occurs in accessing the Velocity and Force arrays.

1. For simplicity, when only one index is used to refer to a vector (Position, Velocity, or Force), it is meant to refer to
all three elements in the referenced column. For example, Position(2) is often referred to Position(1:3,2).

190

5.4.2.2 Profiled Performance Reported by CXpa

We use CXpa to profile the performance of CRASH-Serial, CRASH-SP, and CRASH-SD

running on HP/Convex SPP-1600. The wall clock time, CPU time, and cache miss latency for

these three versions are shown in Tables 5-9 to 5-12. Table 5-9 shows the wall clock time

when minimum profiling is applied. As mentioned above, the CXpa instrumentation may

cause more dilation of the profiled performance when more routines are profiled. When the

Contact phase and Update phase are profiled, the dilation of wall clock time is about 11% for

CRASH-Serial, 23% for CRASH-SP, and 19% for CRASH-SD. Other performance metrics,

including CPU time, cache miss latency, and cache miss count, are dilated as well.

Figure 5-25: The Layout of Array Position in the Processor Cache in CRASH-SD.

Cache Block
(32 Bytes)

Position(1,1) Position(2,1) Position(3,1)

Position(3,2)Position(2,2)

Position(1,2)

Position(2,3)Position(1,3)

Subdomain 0

Subdomain 1

Block k

Block k+1

Position(1,4)Position(3,3) Position(3,4)Position(2,4) Block k+2

Position(1,5) Position(2,5) Position(3,5)

Position(3,6)Position(2,6)

Position(1,6)

Position(2,7)Position(1,7)

Subdomain 0

Subdomain 1

Block k+3

Block k+4

Position(1,8)Position(3,7) Position(3,8)Position(2,8) Block k+5

Position(1,16)Position(3,15) Position(3,16)Position(2,16) Block k+11

.

.

.
Subdomain 3

191

CRASH CRASH-SP CRASH-SD

Wall Clock Time 2.344 2.355 2.510

CPU Time 2.317 5.251 6.091

Cache Miss Latency 0.000267 1.294 2.397

Cache Miss Count 2020 1717976 2617441

Average Latency per Miss 132 ns 753 ns 916 ns

Table 5-9: Performance Metrics Reported by CXpa
(Only the Main Program Is Instrumented).

Program Region
Wall Clock Time (sec.)

CRASH CRASH-SP CRASH-SD

Initialization 0.00817 0.015 0.015

Contact_phase 1.328 1.428 1.475

Update_phase 1.096 1.271 1.302

Total 2.604 2.906 2.983

Table 5-10: Wall Clock Time Reported by CXpa.

Program Region
CPU Time (sec.)

CRASH CRASH-SP CRASH-SD

Initialization 0.00731 0.00733 0.00733

Contact_phase 1.323 3.078 3.497

Update_phase 1.096 2.506 2.823

Total 2.588 5.77 6.505

Table 5-11: CPU Time Reported by CXpa.

Program Region
Total Cache Miss Latency (sec.)

CRASH CRASH-SP CRASH-SD

Initialization 0.000016 0.000031 0.000031

Contact_phase 0.023 0.842 1.416

Update_phase 0.023 0.547 1.019

Total 0.092 1.445 2.492

Table 5-12: Cache Miss Latency Reported by CXpa.

192

At first look, these CXpa profiles seem very different from the simulated performance

obtained via MDS. CRASH-SD has the worst performance among these three versions, with

the highest wall clock time, CPU time, and total cache miss latency. The CPU time in the two

parallel versions is 2.2 to 2.6 times higher than the serial version. High total cache miss laten-

cies contribute to the high CPU time in the parallel versions, but do not fully explain the

increase in the CPU time. The average latency per cache miss (shown in Table 5-9) for the

parallel versions is significantly (30% and 58%) higher than the cache miss latency modeled

by MDS, where 500 ns and 580 ns are used to model a read miss and a write miss respec-

tively. The increased average cache miss latency is possibly due to memory contention.

In the CXpa parallel loop reports (not shown), we find that the wall clock time within the

parallel loops (excluding the spawn/join overhead) is considerably less than the wall clock

time that includes the spawn/join overhead. For example, the heaviest loaded processor spent

0.443 seconds within the doall loop in Update_phase, but it spent 2.367 seconds executing

Update_phase overall. Therefore, we believe that the spawn/join overhead is also a primary

cause of the increase in CPU time for the parallel versions. To measure the spawn/join over-

head, we run a zero-workload version of CRASH-SP, which does not perform any computation

at all within each phase. The results, shown in Table 5-13, measure the total cache miss

latency and wall clock time for spawning and joining 20,000 empty doall loops.

The total cache miss latency is unexpectedly high for CRASH-SP (1.445 seconds) and

CRASH-SD (2.492 seconds). Some of the cache misses come from the barriers for spawning

and joining parallel loops, which contribute approximately 0.864 seconds of cache miss

latency, estimated from the total cache miss latency of the zero-workload CRASH-SP in Table

5-13. However, we cannot identify the cause(s) of the rest of cache miss latency based on these

CXpa profiles.

Program Region
Zero-Workload CRASH-SP

Cache Miss Latency
(sec.)

Wall Clock Time
(sec.)

Contact_phase 0.436 0.993

Update_phase 0.428 0.991

Total 0.864 1.984

Table 5-13: Cache Miss Latency and Wall Clock Time for
a Zero-Workload CRASH-SP, Reported by CXpa

193

5.4.2.3 Comparing MDS and CXpa Results

Even with the time dilation, CXpa generally gives more accurate performance profiles

than MDS does for these three CRASH codes. But, based on the profiles, we are still unable to

identify the exact causes for the performance overheads. As discussed in Section 5.4.2.2, we

speculate that a large portion of the run time comes from spawning and joining parallel loops,

but we still cannot identify the cause(s) of the excessive cache miss latencies in the parallel

codes.

On the other hand, MDS faithfully exposes the machine-application interactions based on

the machine and application models provided by the user. MDS reports relatively high barrier

synchronization cost for spawning and joining the parallel loops. MDS captures the required

communications in the codes and simulates the performance based on these required commu-

nications. Consequently, the simulated performance tends to be optimistic. Note that MDS

does report the number of memory blocks that are false-shared in CRASH-SD. These false-

sharing memory blocks may explain why CRASH-SD actually performs worse than CRASH-

SP.

Fortunately, we do not see any conflicts between the results reported by these two tools.

Instead, these two tools complement one another in our performance analysis. The overall dif-

ferences in the wall clock time reported by MDS and CXpa are shown in Figure 5-26. MDS

reports longer wall clock time than CXpa for CRASH-Serial, but shorter for CRASH-SP and

CRASH-SD. MDS reports longer wall clock time for CRASH-Serial because the CXpa profile

that we used to model CRASH-Serial is more dilated, since we have to profile the run time for

each phase. For CRASH-SP and CRASH-SD, MDS reports more optimistic wall clock time

because there are some performance constraints that are not modeled in MDS.

The extra wall clock time in CRASH-SD is partly due to false-sharing and memory con-

tention, as we explained previously. However, MDS does not detect any false-sharing in

CRASH-SP and, based on the previous analysis, at this point we still cannot fully explain the

0.42 seconds difference between MDS-simulated wall clock time (1.935 seconds) and the

CXpa-profiled wall clock time (2.355 seconds) for CRASH-SP (even after we doubled the cache

miss latency per miss in MDS in order to account for the effect of memory contention).

194

We therefore considered the performance constraints that are not modeled in MDS to find

possible causes for this unidentified overhead, and we discovered that thread migration is in

fact responsible for this overhead. We had expected the parallel loops in CRASH-SP and

CRASH-SD to be spawned with a consistent thread-processor assignment over the entire run,

which was not the case. By binding the threads to processors permanently in CRASH-SP3

(Section 5.4.3.4), we were able to explain and eliminate the 0.42 seconds difference between

MDS and CXpa wall clock time for CRASH-SP. Further performance tuning of CRASH is dis-

cussed in the next section.

5.4.3 Model-Driven Performance Tuning

In this section, we improve the performance of CRASH by applying our goal-directed per-

formance tuning scheme in conjunction with our model-driven performance tuning approach.

Below, we describe a series of tuning actions and their results.

5.4.3.1 First Parallelized Version: CRASH-SP

The performance bounds analysis for CRASH-SP is shown in Figure 5-27. As described in

Chapter 4, we should apply tuning actions in a logical sequence to reduce the magnitude of

significant gaps in each step. The major gaps in CRASH-SP and their causes are:

0

0.5

1

1.5

2

2.5

3

Serial SP SD

CRASH Version

T
im

e
(s

ec
.)

Wall Time (MDS)

Wall Time (Cxpa)

Figure 5-26: Comparing the Wall Clock Time Reported by
MDS and CXpa.

195

• S’-gap (49.4% of the runtime): synchronization cost for executing the barriers.

• Unmodeled gap (17.8% of the runtime): false-sharing (optional) communications and other

unknown factors.

• C’-gap (3.4% of the runtime): required communications.

• L-gap (3.0% of the runtime): overall load imbalance.

5.4.3.2 Better Domain Decomposition: CRASH-SD

Initially, as in Step 1: Action 1 (Section 3.2) of our tuning methodology, we would like to

improve the domain decomposition in CRASH-SP. As mentioned in Section 5.4.1, the domain

decomposition scheme incorporated in CRASH-SD is supposed to reduce the overhead due to

communication and load imbalance. As shown in Figure 5-28, the C’-gap (required communi-

cation) and L-gap (overall load imbalance) are, in fact, reduced. However, the unmodeled gap

is increased due to false-sharing communications, as explained in Section 5.4.2.1.

Figure 5-27: Performance Bounds Analysis for CRASH-SP.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

SP

T
im

e
(%

)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

196

5.4.3.3 Eliminating False-sharing: CRASH-SD2

Since the C’-gap and the expanded unmodeled gap caused by the false-sharing communi-

cations in CRASH-SD are both significant, we chose to reduce the communication overhead as

our next performance tuning step.

We believe that CRASH-SD should perform better than CRASH-SP if false-sharing can be

eliminated from CRASH-SD. To eliminate false-sharing, we use padding to adjust the size of

array Position, Velocity, and Force. In CRASH-SD, each of these arrays is defined as a

one-dimensional array of vectors, where each vector consists of three 8-byte real numbers.

Therefore, each is in fact a two-dimensional array declared as (3,Max_Elements). In CRASH-

SD2 we eliminate false-sharing by increasing the size of these arrays to (4,Max_Elements), as

illustrated in Figure 5-29. The expanded data layout, however, is less efficient in memory

usage and has eight superfluous bytes in each cache block, which affects storage space and

communication.

Consequently, the unmodeled gap, as shown in Figure 5-30, is reduced on CRASH-SD2 to

about the same size as that of CRASH-SP. The C’-gap, however, is increased due to the

Figure 5-28: Performance Bounds Analysis for CRASH-SP and SD.

0

0.5

1

1.5

2

2.5

3

SP SD

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

197

Figure 5-29: Layout of the Position Array in the Processor Cache in CRASH-SD2.

Cache Block
(32 Bytes)

Position(1,1) Position(2,1) Position(3,1)

Position(2,2)Position(1,2)

Position(4,1)

Position(4,2)Position(3,2)

Subdomain 0

Block k

Block k+1

Position(2,3)Position(1,3) Position(4,3)Position(3,3)

Subdomain 1

Block k+2

Position(2,4)Position(1,4) Position(4,4)Position(3,4) Block k+3

Position(1,5) Position(2,5) Position(3,5)

Position(2,6)Position(1,6)

Position(4,5)

Position(4,6)Position(3,6)

Subdomain 0

Block k+4

Block k+5

Position(2,7)Position(1,7) Position(4,7)Position(3,7)

Subdomain 1

Block k+6

Position(2,8)Position(1,8) Position(4,8)Position(3,8) Block k+7

.

.

.

Position(2,15)Position(1,15) Position(4,15)Position(3,15)

Subdomain 3

Block k+14

Position(2,16)Position(1,16) Position(4,16)Position(3,16) Block k+15

Data

Unused

198

expanded data layout. Nevertheless, the overall performance of CRASH-SD2 is better than its

predecessors. The remaining unmodeled gap and the expanded C’-gap are addressed further

in the next version.

The simulated and profiled performance of CRASH-SD2 is shown (with the previous ver-

sions) in Figure 5-31. The profiled performance shows that CRASH-SD2 does indeed perform

better than its predecessors in terms of CXpa wall clock time (2.288 seconds), and the profiled

cache miss latency of CRASH-SD2 is significantly less than CRASH-SD due to the elimina-

tion of false-sharing. The working set analysis performed by MDS, shown in Table 5-14, con-

firms that the false-sharing is eliminated. Note that the communication time reported by

MDS in Figure 5-31 is far less than the profiled cache miss latency, because MDS does not

count the communication time spent within the synchronization routines, but CXpa does, as

explained above in Section 5.4.2.2.

Judging from the CXpa reported cache miss latency in Figure 5-31, CRASH-SD2 causes

more cache miss latency than CRASH-SP. This is due to the increase (33%) in the data struc-

ture size. MDS reports an increase in the working set size of CRASH-SD2 relative to CRASH-

SP and CRASH-SD (see Table 5-14). Therefore, array padding, while it is a simple solution for

Figure 5-30: Comparing the Performance Gaps of CRASH-SD2 to Its
Predecessors.

0

0.5

1

1.5

2

2.5

3

SP SD SD2

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

199

eliminating false-sharing, does not result in a significant improvement over CRASH-SP in

terms of overall performance.

5.4.3.4 Eliminating Subdomain Migration: CRASH-SD3

At the end of Section 5.4.2, we mentioned that the subdomains (threads) may migrate

during the execution, which is one aspect of machine-application behavior that MDS does not

Figure 5-31: Comparing the Performance of CRASH-SD2 to Its Predecessors.

0

0.5

1

1.5

2

2.5

3

Serial SP SD SD2

CRASH Version

T
im

e
(s

ec
.)

Wall Time (MDS)

Wall Time (CXpa)

Communication Time
(MDS)

Cache Miss Latency
(CXpa)

Working Set Analysis CRASH-SP CRASH-SD CRASH-SD2

Basic Working Set Characterization

9. Working Set, Accessed in the Program (Bytes) 1152 1152 1536

10. Working Set, Read from Memory (Bytes) 1152 1152 1536

11. Working Set, Written by Processor(s) (Bytes) 1152 1152 1536

Degree of Sharing

12. Working Set, Accessed by 1 Processor (Bytes) 384 (33%) 576 (50%) 768 (50%)

13. Working Set, Accessed by 2 Processors (Bytes) 384 (33%) 384 (33%) 512 (33%)

14. Working Set, Accessed by 3 Processors (Bytes) 384 (33%) 192 (17%) 256 (17%)

15. Working Set, Accessed by 4 Processors (Bytes) 0 0 0

False-Sharing of Cache Blocks

16. Number of False-Shared Cache Blocks 0 12 0

Table 5-14: Working Set Analysis Reported by MDS for CRASH-SP, CRASH-SD,
and CRASH-SD2.

200

model. Accordingly, we selected Action 3, as discussed in (Section 3.3.2), in an attempt to min-

imize subdomain migration by permanently binding subdomains to processors. The resulting

pseudo code for CRASH-SD3 is shown in Figure 5-32. CRASH-SD3 spawns threads using the

loop_parallel compiler directive before the main simulation loop starts. Since each of

these threads is responsible for one subdomain throughout the main simulation loop, the sub-

domain cannot migrate during the execution. Explicit barriers (wait_barrier()) are placed

at the beginning and the end of each phase to ensure correct parallel execution. Note that

Figure 5-32: A Pseudo Code for CRASH-SD3

program CRASH-SD3

.... (Variable declaration and initialization omitted).

c$dir loop_parallel(ivar=d)
c$dir loop_private(t,ii,i,j,type_element)

do d=1,Num_Subdomains

c Main Simulation Loop
t=0

c First phase: generate contact forces
100 wait_barrier(barr1,Num_Subdomains)

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do
wait_barrier(barr2,Num_Subdomains)

c Second phase: update position and velocity
200 wait_barrier(barr3,Num_Subdomains)

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_glass(i, Position(i), Velocity(i), Force(i))
 end if
end do
wait_barrier(barr4,Num_Subdomains)

if (end_condition) stop
t=t+t_step
goto 100

end do
end

201

explicit barriers were not needed in CRASH-SP/SD/SD2 since their phases were formed by

DOALL loops and barriers will be invoked when the DOALL loops are spawned and joined.

The performance bounds analysis (Figure 5-33) shows that the unmodeled gap has now

been eliminated from CRASH-SD3, due to permanently binding subdomains to processors.

The simulated and profiled performance of CRASH-SD3 are compared with previous versions

in Figure 5-34. The MDS simulated wall clock time of CRASH-SD3 is now very close to the

CXpa profiled performance of CRASH-SD3 (due to the elimination of thread migration which,

as stated above, is accounted for in CXpa, but not modeled in MDS). MDS wall clock time is

slightly longer than CXpa wall clock time because of the time dilation in the application model

used in MDS. Elimination of thread migration causes a visible decrease in cache miss latency.

5.4.3.5 Reducing Synchronization Cost: CRASH-SD4

In this case study, we skip Step 3 (Optimizing Processor Performance), because we are not

interested in tuning processor performance. Since the L-gap (overall load imbalance) is not

significant in CRASH-SD3, we also skip Step 4 (Balancing the Load for Single Phases). In this

version, we attempt to reduce the S’-gap by reducing the number of barriers.

Figure 5-33: Comparing the Performance Gaps of CRASH-SD3 to Its
Predecessors.

0

0.5

1

1.5

2

2.5

3

SP SD SD2 SD3

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

202

According to hierarchical performance bounds analysis performed by MDS (Figure 5-24),

the synchronization time is obviously the most significant performance problem exhibited by

the parallel CRASH codes introduced so far. In CRASH-SD3, we have a better view of this

problem because the barriers are explicitly placed in the code. From Figure 5-32, we notice

that some of the barriers, namely, barr2-barr3 and barr4-barr1, are placed consecutively

and hence cause redundant synchronization time. This is typical when DOALL loops or auto-

matic parallelization are used in a code, and most compilers today do not attempt to eliminate

the redundant barriers.

We remove redundant barriers by replacing consecutive barriers with one barrier. Conse-

quently, barr3 and barr4 are removed1, as shown in Figure 5-35. The performance bound

analysis reported by MDS shows that this new version, CRASH-SD4, is significantly

improved over CRASH-SD3 due to reduced synchronization overhead (smaller S’-gap), as

shown in Figure 5-36. Approximately 50% of the S’ gap is eliminated as a result of removing

two of the four barriers.

1. Alternatively, we could choose to remove (barr1,barr2), (barr1,barr3) or (barr2,barr4), which all yield the same
performance.

Figure 5-34: Comparing the Performance of CRASH-SD3 to Its Predecessors.

0

0.5

1

1.5

2

2.5

3

Serial SP SD SD2 SD3

CRASH Version

T
im

e
(s

ec
.)

Wall Time (MDS)

Wall Time (Cxpa)

Communication Time
(MDS)

Cache Miss Latency
(Cxpa)

203

At this point, the S’-gap is the only performance gap that is still critical to the overall per-

formance for this particular case study. It is possible that the S’-gap will become less signifi-

cant and some other gaps will become more critical if the computation workload between the

barriers increased with a larger input data set. Thus, we continue to fine-tune the code in

areas where we can apply further tuning actions. The remaining tuning actions demonstrate

the ability of MDS to provide subtle performance assessment for evaluating the results of

fine-tuning actions and thereby prepare the code for larger input data sets. Furthermore,

some innovative tuning actions that are not immediately available, such as the use of double

buffering to reduce the number of barriers in CRASH-SD8 (Section 5.4.3.9), may be inspired

after some other actions are applied.

Figure 5-35: A Pseudo Code for CRASH-SD4

program CRASH-SD4

.... (Variable declaration and initialization omitted).

c$dir loop_parallel(ivar=d)
c$dir loop_private(t,ii,i,j,type_element)

do d=1,Num_Subdomains

c Main Simulation Loop
t=0

c First phase: generate contact forces
100 wait_barrier(barr1,Num_Subdomains)

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do
end do

c Second phase: update position and velocity
200 wait_barrier(barr3,Num_Subdomains)

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position(i), Velocity(i), Force(i))
 else if (type_element .eq. glass) then

call Update_glass(i, Position(i), Velocity(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100

end do
end

204

5.4.3.6 Array Grouping (1):CRASH-SD5

The array padding method did eliminate false-sharing for CRASH-SD2, SD3, and SD4,

but it also increased the required communication time because accessing each 24-byte vector

brings 8 bytes of unused data into the cache. The data layout in these codes is as shown in

Figure 5-37(a), and their working set size is 1536 bytes. One better, but more sophisticated

way is to apply array grouping (Action 5), as discussed in Section 3.3.2.

First, we attempt to tune CRASH by grouping arrays Position, Velocity, and Force.

For a new version of CRASH, CRASH-SD5, we place vectors Position(i), Velocity(i),

and Force(i) consecutively in the memory space, as shown in Figure 5-37(b). Unfortunately,

this modification does not reduce the memory requirement, instead, it results in a different

sort of false-sharing. MDS reports that there are 12 memory blocks that are false-shared in

CRASH-SD5. False-sharing occurs because part of Velocity(i) and part of Force(i) share

the same block. During Contact, Force(i) is written by its owner processor, but Veloc-

ity(i) can be read by one or two other processors if element i is at the boundary of two or

three subdomains.

Figure 5-36: Comparing the Performance of CRASH-SD4 to Its Predecessors.

0

0.5

1

1.5

2

2.5

3

SP SD SD2 SD3 SD4

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

205

Figure 5-37: The Layout in CRASH-SD2, SD3, SD4, SD5, and SD6.

Position

(1,1) (2,1) (4,16)

Velocity

(1,1) (2,1) (4,16)

Force

(1,1) (2,1) (4,16)...

(1,1) (2,1) (1,2)(1,1) (2,1) (1,1) (2,1)

Total Size; 4*16*8*3=1536 Bytes

...
(3,1) (3,1) (3,1) (2,2)

(a) The Data Layout in CRASH-SD2, SD3, and SD4

(b) The Data Layout in CRASH-SD5

32-Byte Block k

Total Size; 32 * 6 =1536 Bytes

(1,1) (2,1) (1,3)(1,1) (2,1)
...

(3,1) (3,1) (2,3)(1,2) (2,2) (1,2) (2,2)(3,2) (3,2)

Position
Velocity
Force

(1,1) (2,1) (3,1) (1,2) (2,2) (3,2) (1,3) (2,3) (3,3)
...

(4,3)(4,2)(4,1)

Pad Elements

Block k+1 Block k+2

32-Byte Block k Block k+1 Block k+2

(c) The Data Layout in CRASH-SD6

Total Size; 3*16*2*8+4*16*8=1280 Bytes

206

The profiled performance of CRASH-SD5 is shown in Figure 5-38 along with CRASH-

SD4. Although the cache miss latency of CRASH-SD5 is higher than CRASH-SD4, interest-

ingly, the profiled wall clock times of these two versions are almost identical.

The failure to improve performance with CRASH-SD5 is a result of blindly applying array

grouping, which in this case introduces a different form of false sharing without eliminating

pad elements. Unfortunately, while some theories (e.g. [50]) have been proposed to guide the

use of array grouping, we have not seen any of those theories implemented in any compiler or

public domain tool. We chose to present this case to demonstrate that failure of an ill-con-

ceived tuning step is common, and we need proper tools to help us minimize such mistakes

along with the wasted effort in implementing them and the performance degradation and

other complications that they can cause.

5.4.3.7 Array Grouping (2): CRASH-SD6

To properly apply array grouping, the program’s data access pattern must be considered.

In [50], Shih and Davidson provide a systematic method of array grouping to reduce commu-

nication and improve the locality of parallel programs. Choosing arrays for grouping is a criti-

cal step. It is determined by analyzing the array reference patterns recorded in the Program

Figure 5-38: Comparing the Performance of CRASH-SD5 to CRASH-SD4.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SD4 SD5

CRASH Version

T
im

e
(s

ec
.) Wall Time (Cxpa)

Cache Miss Latency
(Cxpa)

207

Section Array Table (PSAT)1. The PSAT of CRASH, for any of the versions discussed here, is

shown in Table 5-15 and explained below:

• Each reference pattern recorded in the PSAT (e.g. RI2(global)) starts with a letter R (Read)

or W (Write) to indicate the type of access.

• Reference patterns are classified as C (consecutive), Id(X) (indirect on dimension d through

array X), and Fd(f) (non-unit stride on dimension d using a function f of loop index vari-

ables). For example, one reference pattern of array Position in Contact_phase is speci-

fied by I2(global), which indicates that the second dimension of Position is indexed

indirectly though global(ii).

• One array can have more than one reference pattern in a particular program section.

It is quite simple for us to create the above PSAT using the information in the data depen-

dence module of CRASH. Based on the array grouping method of [50], or intuitively, grouping

arrays Position and Velocity should improve the code performance since these arrays

share identical reference patterns, but grouping all three arrays as we did in CRASH-SD5

may cause problems since their reference patterns are quite different.

The results of the above discussion is implemented in new version of CRASH, CRASH-

SD6, which uses the data layout scheme shown in Figure 5-37(c). Both the simulated and pro-

filed performance of CRASH-SD6, as shown in Figure 5-39, show a significant reduction in

the communication overhead (MDS) and cache miss latency (CXpa), because 25% of the com-

munications of array Position and Velocity are eliminated. Although the CXpa-profiled

1. The term program section is equivalent to the term program region used in this dissertation. To be consistent with
the original work, we use program section in the discussion of array grouping here.

Program Region Position Velocity Force

Contact_phase
RI2(global),

RI2(neighbor)
RI2(global),

RI2(neighbor)
WI2(global)

Update_phase
RI2(global),
WI2(global)

RI2(global),
WI2(global)

RI2(global)

Table 5-15: PSAT of Arrays Position, Velocity, and Force in CRASH.

208

cache miss latency is reduced by 0.346 seconds, the CXpa-profiled wall clock time is only

reduced by 0.05 seconds, because (i) the reduction is shared by four processors, and (ii) some of

the reduced cache miss latency was tolerated by the PA7200 processor’s out-of-order execution

capability in CRASH-SD5.

5.4.3.8 Fusing Contact and Update: CRASH-SD7

In the previous versions of CRASH, the execution is separated into two phases because of

the interprocessor data dependencies, as discussed in Section 2.2.4 and illustrated in Figure 5-

40(a). One type of the data dependence that exists in CRASH is Write-After-Read (WAR),

which prohibits us from writing arrays Position and Velocity in Update before Contact

finishes reading them. MDS performs data flow analysis to help the user to distinguish differ-

ent types of data dependencies (RAW, WAR, or WAW), as well as to visualize the RAW depen-

dencies between program regions and between processors. Figure 5-41(a) shows the data

dependence graph of CRASH-SD6.

WAR dependencies can be delayed by using buffers, as shown in Figure 5-40(b). Instead of

writing the results to Position and Velocity, the Update phase in CRASH-SD7, as shown

in Figure 5-42, now writes to buffers Position_Buffer and Velocity_Buffer. An addi-

tional phase, the Copy phase, is performed after Update to copy the results from the buffers

Figure 5-39: Comparing the Performance of CRASH-SD6 to Previous Versions.

0

0.5

1

1.5

2

SD3 SD4 SD5 SD6

CRASH Version

T
im

e
(s

ec
.)

Wall Time (MDS)

Wall Time (Cxpa)

Communication Time
(MDS)

Cache Miss Latency
(Cxpa)

209

Contact Phase

Update Phase

Contact Phase

Time

Figure 5-40: Delaying Write-After-Read Data Dependencies By Using Buffers.

barrier 1

barrier 2

Read Position(Neighbor(j,i)), Velocity(Neighbor(j,i))

Write Position(i), Velocity(i)

Read Position(Neighbor(j,i)), Velocity(Neighbor(j,i))

Write-after-Read

Read-after-Write

Contact Phase

Update Phase

Contact Phase

Time

barrier 1

barrier 2

Read Position(Neighbor(j,i)), Velocity(Neighbor(j,i))

Write Position_Buffer(i), Velocity_Buffer(i)

Read Position(Neighbor(j,i)), Velocity(Neighbor(j,i))

Write-after-Read

Copy Phase
Read Position_Buffer(i), Velocity_Buffer(i)
Write Position(i), Velocity(i)

Interprocessor
Data Dependency

Interprocessor
Data Dependency

Read-after-Write

(a) Data Accesses that Cause Interprocessor Data Dependencies
in CRASH-SD6.

(b) Data Accesses that Cause Interprocessor Data Dependencies
When Buffers Are Used in CRASH-SD7.

210

Figure 5-41: The Results of Delaying Write-After-Read Data Dependencies
By Using Buffers.

Contact

Update

Contact

p0 p1 p2 p3

Position/Velocity

p0 p1 p2 p3

Force

C

U

CC C

U U U

C CC C

U U U U

C CC C
C CC C

Contact

Update

Contact

p0 p1 p2 p3

Position/Velocity/Buffers

p0 p1 p2 p3

Force

C

U

CC C

U U U

C CC C

U U U U

C CC C
C CC C

Copying Buffers B BB B B BB B
to Position/Velocity

(a) The Data Dependence Graph of CRASH-SD6

(b) The Data Dependence Graph after Buffers Are Used to
Remove the WAR dependencies from Contact to Update by

To next

From previous B

U

Accessing Position and Velocity.

RAW WAR
(WAW dependencies are not shown.)

211

Figure 5-42: A Pseudo Code for CRASH-SD7

program CRASH-SD7

.... (Variable declaration and initialization omitted).

c$dir loop_parallel(ivar=d)
c$dir loop_private(t,ii,i,j,type_element)

do d=1,Num_Subdomains

c Main Simulation Loop
t=0

100 wait_barrier(barr1,Num_Subdomains)

do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)

c Contact phase
 Force(i)=Contact_force(Position(i),Velocity(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position(i),Velocity(i),

 Position(Neighbor(j,i),Velocity(Neighbor(j,i))
 end do

c Update phase
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position_Buffer(i),
Velocity_Buffer(i), Force(i))

 else if (type_element .eq. glass) then
call Update_glass(i, Position_Buffer(i),

Velocity_Buffer(i), Force(i))
 end if

end do

200 wait_barrier(barr2,Num_Subdomains)

c Copy phase
do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)

Position(i)=Position_Buffer(i)
Velocity(i)=velocity_Buffer(i)

end do

if (end_condition) stop
t=t+t_step
goto 100

end do
end

212

back to Position and Velocity. Now there is no interprocessor data dependency between

Contact and Update, hence Contact and Update need not be separated by a barrier. The WAR

dependencies are delayed and occur between the Contact and Copy phases, so a barrier is

needed to separate Contact and Copy. Figure 5-41(b) shows the data dependence graph that

results from when these buffers are used. Since this code transformation adds a new routine

for copying the buffers, the run time of the new code needs to be profiled to update the weight

module, and to capture the effect of the new code in the control flow and data dependence

modules.

What benefit can the code realize by delaying the WAR dependencies? As shown in

Figure 5-40(b), the workload of Contact and Update in one iteration are no longer separated

by a barrier, which eliminates the multiphase load imbalance due to that barrier. But note

that we still need one barrier to ensure that Contact is finished before the buffers are copied

back to Position and Velocity. Thus we can we cannot reduce the number of barriers with

this approach.

Performance bounds analysis from MDS, as shown in Figure 5-43, reveals the changes in

performance that results from CRASH-SD7. Since the run time overhead due to multiphase

load imbalance is relatively low for the particular input used in this case study, the benefit of

Figure 5-43: Performance Bounds Analysis for CRASH-SD5, SD6, and SD7.

0.54
0.56
0.58
0.6

0.62
0.64
0.66
0.68
0.7

0.72
0.74

SD6 SD7

Code

T
im

e
(s

ec
.)

M’-gap

L-gap

C’-gap

P-gap

I-bound

213

this transformation is overshadowed by the added workload for performing the Copy phase, as

reflected in the increased I-Bound of CRASH-SD7. Hence the performance of CRASH-SD7 is

worse than CRASH-SD6 performance. However, CRASH-SD7 might perform better than

CRASH-SD6 given a different input or machine configuration, particular when multiphase

load imbalance is more critical to performance.

5.4.3.9 Double Buffering: CRASH-SD8

The extra overhead from the Copy phase in CRASH-SD7 might be eliminated by using a

technique called double buffering, which is done by alternating the arrays that store the

results between iterations. A new code, CRASH-SD8, which uses double buffering, is shown in

Figure 5-44. The main loop in CRASH-SD7 is unrolled twice to form CRASH-SD8. In the first

half, Contact reads (Position1, Velocity1) and Update writes (Position2, Velocity2);

in the second half, Contact reads (Position2, Velocity2) and Update writes (Position1,

Velocity1). Thus, there is no need for a copy phase between iterations.

In CRASH-SD8, interprocessor RAW data dependencies appear between Update1 and

Contact2, and between Update2 and Contact1, and interprocessor WAR data dependencies

appear between Contact1 and Update2, and between Contact2 and Update1, as shown in

Figure 5-45. In one (unrolled) iteration, two barriers are sufficient to satisfy these interproces-

sor data dependencies. Each of these barriers separates one Contact-Update pair from the

next. Compared to previous versions, the number of barriers per Contact-Update pair is

reduced from two to one.

The performance bounds analysis from MDS, as shown in Figure 5-46, reveals the results

of this code restructuring. CRASH-SD8 maintains the benefit of fusing the Contact and

Update phases, as in CRASH-SD7, which results in a zero Multiphase (M’) gap. The I bound

of SD8 (the same as SD6) is smaller than that of SD7, due to the elimination of the Copy

phase. Most importantly, the synchronization (S’ gap) is reduced to 1/2 that of SD4 through

SD7, and 1/4 that of SD through SD3.

214

Figure 5-44: A Pseudo Code for CRASH-SD8

program CRASH-SD8

.... (Variable declaration and initialization omitted).

c$dir loop_parallel(ivar=d)
c$dir loop_private(t,ii,i,j,type_element)

do d=1,Num_Subdomains

c Main Simulation Loop
t=0

100 wait_barrier(barr1,Num_Subdomains)
do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)

c Contact1 phase
 Force(i)=Contact_force(Position1(i),Velocity1(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position1(i),Velocity1(i),

 Position1(Neighbor(j,i),Velocity1(Neighbor(j,i))
 end do

c Update1 phase
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position2(i),
Velocity2(i), Force(i))

 else if (type_element .eq. glass) then
call Update_glass(i, Position2(i),

Velocity2(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step

200 wait_barrier(barr2,Num_Subdomains)
do ii=1,Num_Elements_in_subdomain(d)
 i=global_id(ii,d)

c Contact2 phase
 Force(i)=Contact_force(Position2(i),Velocity2(i))
 do j=1,Num_Neighbors(i)
 Force(i)=Force(i)+Propagate_force(Position2(i),Velocity2(i),

 Position2(Neighbor(j,i),Velocity2(Neighbor(j,i))
 end do

c Update2 phase
 type_element=Type(i)
 if (type_element .eq. plastic) then

call Update_plastic(i, Position1(i),
Velocity1(i), Force(i))

 else if (type_element .eq. glass) then
call Update_glass(i, Position1(i),

Velocity1(i), Force(i))
 end if
end do

if (end_condition) stop
t=t+t_step
goto 100

end do
end

215

Figure 5-45: Data Accesses and Interprocessor Data Dependencies in CRASH-SD8.

Contact1 Phase

Update1 Phase

Time

barrier 1

Read Position1(Neighbor(j,i)), Velocity1(Neighbor(j,i))

Write Position2(i), Velocity2(i)

Write-after-Read

Interprocessor
Data Dependency

Contact2 Phase

Update2 Phase

Read Position2(Neighbor(j,i)), Velocity2(Neighbor(j,i))

Write Position1(i), Velocity1(i)

Contact1 Phase

Update1 Phase

Read Position1(Neighbor(j,i)), Velocity1(Neighbor(j,i))

Write Position2(i), Velocity2(i)

barrier 2

Read-after-Write

Figure 5-46: Performance Bounds Analysis for CRASH-SD6, SD7, and SD8.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SD6 SD7 SD8

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

216

5.4.4 Summary of the Case Study

In this section, we have used our model-driven simulator (MDS) to illustrate the use of

application models in predicting and analyzing the performance of various CRASH versions

and to guide the selection of tuning actions that move the code from one version to the next.

We have applied a series of performance tuning actions in various goal-directed attempts to

improve the performance of CRASH. The performance analysis reports from MDS, in conjunc-

tion with the performance profiles from CXpa, provided valuable guidance and evaluation in

this performance tuning process. The overall results of performance tuning process are sum-

marized in Figure 5-47. From the hierarchical performance bounds analysis shown in

Figure 5-48, the cost of synchronization remains as the primary performance bottleneck in

the parallel versions, but as the problem size increases, the synchronization cost will be

decreased relative to computation time.

5.5 Summary

In this chapter, we have described an application modeling process that is capable of

abstracting important application behavior into a set of programmer-friendly, easy to access

modules. While this application modeling process is designed to be carried out by program-

mers, we also discussed how tools can be applied to help clarify ambiguous application behav-

ior and automate routine work. The use of application models provides a common language

and medium that programmers, performance tuning specialists, and programming tools all

can access.

This explicit use of application and machine models is an innovative approach to perfor-

mance tuning. Most compilers form intermediate representations of applications and analyze

application performance with simplified machine models (if not explicitly, then at least

implicitly through their defined heuristics). Our model-driven approach provides a paradigm

for compilers to extend their capability by interacting with programmers, performance tuning

specialists, and programming tools, and by performing more sophisticated analyses.

With our model-driven simulator, we can carry out numerous analyses of machine-appli-

cation interactions that are difficult or impossible to do on real machines. Several key tech-

217

niques and tools that have been widely used in the Parallel Performance Project have been

integrated into MDS (e.g. K-LCache, CXBound,...) or interfaced with MDS (e.g. Dinero, CIAT/

CDAT,...). With this rich set of tools and techniques and its simple, yet flexible model descrip-

tion language, AML, MDS provides a variety of system-level and global event counts and per-

formance metrics that are more sophisticated than those provided by existing performance

assessment tools. In our preliminary case study, we showed that MDS analyzes data flow and

Figure 5-47: Summary of the Performance of Various CRASH Versions.

0

0.5

1

1.5

2

2.5

3

S
er

ia
l

S
P

S
D

S
D

2
S

D
3

S
D

4
S

D
5

S
D

6
S

D
7

S
D

8

Code

T
im

e
(s

ec
.) Wall Time

(MDS)

Wall Time
(Cxpa)

Figure 5-48: Performance Gaps of Various CRASH Versions.

0

0.5

1

1.5

2

2.5

3

S
er S
P

S
D

S
D

2

S
D

3

S
D

4

S
D

5

S
D

6

S
D

7

S
D

8

Code

T
im

e
(s

ec
.)

Unmodeled

S’-gap

M’-gap

L-gap

C’-gap

P-gap

I-bound

218

data working sets, exposes required communications, detects false sharings, and calculates

load imbalances as well as performance bounds, and illustrated how the performance infor-

mation provided by MDS is useful for guiding performance tuning.

While adding more performance assessment features to MDS seems quite straightfor-

ward, our ultimate goal of automating the performance tuning process requires extensive fur-

ther research effort. With MDS and its application models, we have substantially reduced the

difficulty of integrating existing techniques and carrying out performance tuning in a new

and powerful application development environment.

219

CHAPTER 6. CONCLUSION

Performance tuning is very important to many real-time scientific/engineering applica-

tions as state-of-the-art compilers often fail to adequately exploit the peak performance and

scalability of parallel computers. Very few application developers or computer architects are

capable and willing to spend so much time in this tedious performance tuning process. Thou-

sands of hours spent on hand tuning parallel applications have motivated us to search for

practical and effective solutions to improve current application development environments.

In Chapter 1, we presented an overview of modern parallel architectures, typical current

parallel application development environments and their weaknesses, and major problems

that can result in significant gaps between the peak machine performance and the delivered

performance on these machines. The delivered performance can often be improved by tuning

the applications, and the secret of performance tuning lies in having an intimate knowledge of

the machine-application pair and using that knowledge to achieve a proper orchestration of

the machine-application interactions.

To understand the behavior of the machine-application pair, a fairly complete and accu-

rate assessment of the delivered performance is necessary. In Chapter 2, we discussed the

performance characterization of modern parallel machines, problems that can affect their

delivered performance, important machine-application interactions that are related to these

problems, and techniques to expose these interactions, assess performance problems, and

gain insights regarding the machine-application pair. We also presented several innovative

techniques that allow the memory traffic and communication patterns in large applications to

be effectively exposed and analyzed in distributed shared memory systems via trace-driven

simulation.

What often drives many programmers away from parallel computing today is the com-

plexity of the performance tuning process required to develop a reasonably efficient parallel

220

code. Given an example complex as a full vehicle crash simulation, it can take researchers

years to fine-tune the code for one representative data input and machine configuration. In

Chapter 3, we presented a general performance tuning scheme that can be used for systemat-

ically applying a broad range of performance tuning actions to solve major performance prob-

lems in a well-ordered sequence of steps. The discussion in this chapter covers numerous

performance issues, the interrelationship of these performance issues, and the positive, as

well as negative effects of performance tuning actions. This innovative performance tuning

scheme, along with the intuitions presented in the discussion and several new performance

tuning techniques, provides an important new paradigm that unifies the performance tuning

processes and reduces the complexity and mystery of the overall process.

To further guide programmers through the performance tuning process, we have success-

fully extended and automated the hierarchical performance bounds methodology that was

previously developed in the Parallel Performance Project. In Chapter 4, we described an

extended performance bounds hierarchy that matches our systematic performance tuning

scheme, a tool (CXBound) that automatic generates parallel bounds on HP/Convex Exemplar,

and case studies to show the effectiveness of this methodology in assessing and visualizing

application performance for programmers. Our hierarchical performance bounds methodology

is one of the most comprehensive and effective tools to date for assessing parallel application

performance.

In Chapter 5, we proposed the use of application models to further reduce the complexity

of a performance tuning process. We described an application modeling process that creates

intermediate representations for abstracting performance-related application behavior. Given

a machine model, our model-driven simulator (MDS) exposes important machine-application

interactions and assesses the delivered performance; it is thus highly useful for conducting

performance tuning with application models described above. These innovations in model-

driven performance tuning should provide an efficient mechanism for reducing the complexity

and cost of performance tuning of parallel applications and specifying the designs of future

parallel machines in an application-sensitive manner.

In summary, the major contributions of this dissertation are: (1) a performance tuning

paradigm that systematically addresses important performance problems, (2) a goal-directed

scheme that guides performance tuning with hierarchical performance bounds analysis, and

221

(3) a model-driven methodology that eases the performance tuning process by quickly estimat-

ing the results of tuning actions via model-driven simulation.

In this dissertation, although we have contributed numerous insights and various innova-

tions for optimizing parallel applications, we feel that this is only one more step toward fully

understanding and solving an extremely subtle and complex problem. This dissertation uni-

fies a range of research work done within the Parallel Performance Project at the University

of Michigan; it also provides a solid foundation for us to pursue the remaining unsolved

aspects of this problem. Much work remains to be done for further formalizing, automating,

and optimizing the approaches we have developed. To further enhance our application devel-

opment environment, we are interested in learning, developing, and integrating new tech-

niques that would help us assess, tune, and model machine-application performance. We are

currently extending our goal-directed and model-driven tuning methodology to experiment

with automatic/dynamic performance tuning as well as advanced computer architecture

designs. Eventually, we would like to integrate the techniques developed in this research into

future compilers.

222

REFERENCES

[1] Ian Foster. Design and Building Parallel Programs: Concepts and Tools for Parallel
Software Engineering, Addison-Wesley, 1994.

[2] Karen A. Tomko. Domain Decomposition, Irregular Applications, and Parallel Comput-
ers. Ph.D Thesis, The University of Michigan, 1995.

[3] M. J. Flynn. Very high-speed computing systems. In Proc. IEEE 54:12. pages 1901-
1909, December, 1966.

[4] IEEE Computer Society. IEEE Standard for Scalable Coherence Interface (SCI), IEEE
Standard 1596-1992, Aug. 1993.

[5] T. Asprey, G. Averill, E. Delano, R. Mason, B. Weiner, and J. Yetter. Performance fea-
tures of the PA7100 microprocessor. In IEEE Micro, pp. 22-34, June 1993.

[6] Kenneth K. Chen, Cyrus C. Hay, John R. Keller, Gorden P. Kurpanek, Francis X. Schu-
macher, and Jason Zheng. Design of the HP PA 7200 CPU, Hewlett-Packard Journal,
Feburary 1996.

[7] Doug Hunt. Advanced performance features of the 64-bit PA-8000, In Digest of Papers,
COMPCON ‘95, pp. 123-129, March 1995.

[8] Convex Computer Corp. Convex Exemplar SPP1000-Series Architecture. 4th Ed., HP
Convex Technology Center, May 1996.

[9] T. Brewer and G. Astfalk. The evolution of the HP/Convex Exemplar. In Digest of
papers, COMPCON’97, pp. 81-86, Feb. 1997.

[10] Gheith A. Abandah and Edward S. Davidson, Characterizing Shared Memory and Com-
munication Performance: A Case Study of the Convex SPP-1000, Technical Report, Dept.
of Electrical Engineering and Computer Science, The University of Michigan, Jan 1996.

[11] Gheith A. Abandah. Characterizing Shared-Memory Applications: A Case Study of the
NAS Parallel Benchmarks. Technical Report HPL-97-24, HP Laboratories, January
1997.

[12] Gheith A. Abandah and Edward S. Davidson. Characterizing shared memory and com-
munication performance: a case study of the Convex SPP-1000, To appear in IEEE
Transcations of Parallel and Distributed Systems.

[13] Gheith A. Abandah and Edward S. Davidson. Effect of architectural and technological
advances on the HP/Convex Exemplar’s memory and communication performance, To

223

appear in Proc. 25nd Ann. International Symposium on Computer Architecture, June
1998.

[14] Gheith A. Abandah and Edward S. Davidson. Modeling the communication performance
of the IBM SP2. In Proc. 10th International Parallel Processing Symposium, April 1996.

[15] Eric L. Boyd, Gheith A. Abandah, Hsien-Hsin Lee, and Edward S. Davidson. Modeling
Computation and Communication Performance of Parallel Scientific Applications: A
Case Study of the IBM SP2. Technical Report CSE-TR-236-95, The University of Michi-
gan, Ann Arbor, May 1995.

[16] Theodore B. Tabe, Janis P. Hardwick, Quentin F. Stout. Statistical analysis of commu-
nication time on the IBM SP2, In Computing Science and Statistics 27, pp. 347-351,
1995.

[17] K. Li. IVY: A shared virtual memory system for parallel computing. In Proc. Interna-
tional Conference on Parallel Processing. pages 94-101, 1988

[18] Steven K. Reinhardt, James R. Larus, David A. Wood. Typhoon and tempest: user-level
shared memory, ACM/IEEE International Symposium on Computer Architecture, April
1994.

[19] High Performance FORTRAN Language Specification. Technical Report, Rice Univer-
sity, 1993.

[20] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with
the Message Passing Interface. MIT Press, 1995.

[21] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency:
Practice and Experience, 2(4):315-339, 1990.

[22] J. R. Allen and K. Kennedy. Automatic Translation of Fortran Programs to Vector
Form. In ACM Trans. Programming Languages and Systems, Vol. 9, No. 4, Oct. 1987.

[23] Constantine Polychronopoulos, Milind B. Girkar, Mohammad R. Haghighat, Chia L.
Lee, Bruce P. Leung, Dale A. Schouten. The structure of parafrase-2: an advanced par-
allelizing compiler for C and Fortran. Languages and Compilers for Parallel Computing,
MIT Press, 1990

[24] S. P. Amarasinghe, J. M. Anderson, M. S. Lam and C. W. Tseng. The SUIF compiler for
scalable parallel machines. In Proceedings of the Seventh SIAM Conference on Parallel
Processing for Scientific Computing, February, 1995.

[25] Kendall Square Research. KSR Fortran Programming. July 1993.

[26] Convex Computer Corp. CONVEX Fortran User’s Guide. Oct. 1994.

[27] Convex Computer Corp. CONVEX Fortran Language Reference, 11th Ed. Convex Press,
Oct. 1994.

[28] Bruce Hendrickson and Robert Leland. The Chaco User's Guide Version 2.0. Technical
Report SAND94-2692, Sandia National Laboratory, Albuquerque, NM, July 1995.

224

[29] George Karypic and Vipin Kumar. METIS: Unstructured Graph Partitioning and
Sparse Matrix Ordering System Version 2.0. Technical Report, The University of Minne-
sota, 1995.

[30] Karen A. Tomko and Edward S. Davidson. Profile driven weighted decomposition. In
Proc. 1996 ACM International Conference on Supercomputing, May 1996.

[31] J. A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Trans. Comput., vol. C-30, No. 7, pages 478-490, July 1981.

[32] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using profile information to assist classic
code optimizations. In Software-Practice and Experience, Vol. 21, pages 1301-1321, Dec.
1991.

[33] CONVEX Computer Corp.,ConvexMLIB User’s Guide: LAPACK, Document No. 720-
005630-003, June 1994.

[34] Applied Parallel Research. FORGE Shared Memory Parallelizer (spf) User’s Guide 2.0.

[35] Convex Computer Corp., CONVEX CXpa Reference, 2nd Ed., Convex Press,1994.

[36] IBM. Program Visualizer (PV) Tutorial and Reference Manual. Feb. 1995.

[37] Eric L. Boyd, John-David Wellman, Santosh G. Abraham, and Edward S. Davidson.
Evaluating the communication performance of MPPs using synthetic sparse matrix
multiplication workloads. In Proceedings of the International Conference on Supercom-
puting, pp. 240-250, Tokyo, Japan, November 93.

[38] Gheith A. Abandah. Tools for Characterizing Distributed Shared Memory Applications.
Technical Report HPL-96-157, HP Laboratories, December 1996.

[39] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. Davidson. A Perfor-
mance Comparison of the IBM RS/6000 and the Astronautics ZS-1. IEEE Computer, Vol
24(1), pp 39-46, January 1991.

[40] William H. Mangione-Smith, Santosh G. Abraham, and Edward S. Davidson. Architec-
tural vs. Delivered Performance of the IBM RS/6000 and the Astronautics ZS-1. Proc.
Twenty-Fourth Hawaii International Conference on System Sciences, pp 397-408, Janu-
ary 1991.

[41] Eric L. Boyd and Edward S. Davidson. Communication in the KSR1 MPP: performance
evaluation using synthetic workload experiments. In Proc. 1994 International Confer-
ence on Supercomputing, pages 166-175, July 1994.

[42] Waqar Azeem. Modeling and Approaching the Deliverable Performance Capability of the
KSR1 Processor. Technical Report CSE-TR-164-93, The University of Michigan, Ann
Arbor, June 1993

[43] Gheith A. Abandah. Reducing Communication Cost in Scalable Shared Memory Sys-
tems. Ph.D. Dissertation, Technical Report CSE-TR-362-98, Department of EECS, Uni-
versity of Michigan, April 1998.

[44] Eric L. Boyd, Waqar Azeem, Hsien-Hsin Lee, Tien-Pao Shih, Shih-Hao Hung, and
Edward S. Davidson. A hierarchical approach to modeling and improving the perfor-

225

mance of scientific applications on the KSR1. In Proceeding of the 1994 International
Conference on Parallel Processing, Vol. III, pp. 188-192, 1994.

[45] Tien-Pao Shih. Goal-Directed Performance Tuning for Scientific Applications. Ph.D Dis-
sertation, Department of Electrical Engineering and Computer Science, The University
of Michigan, Ann Arbor, Michigan, June 1996.

[46] William H. Mangione-Smith. Performance Bound and Buffer Space Requirements for
Concurrent Processors. Ph.D. Thesis (Technical Report CSE-TR-129-92), The University
of Michigan, Ann Arbor, 1992.

[47] Eric L. Boyd and Edward S. Davidson. Hierarchical Performance Modeling with MACS:
A Case Study of the Convex C-240. Proceedings of the 20th International Symposium on
Computer Architecture, pp 203-212, May 1993.

[48] Eric L. Boyd. Performance Evaluation and Improvement of Parallel Applications on
High Performance Architectures. Ph.D dissertation, Department of Electrical Engineer-
ing and Computer Science, The University of Michigan, Ann Arbor, 1995.

[49] William H. Mangione-Smith, Tien-Pao Shih, Santosh G. Abraham, and Edward S.
Davidson. Approaching a machine-application bound in delivered performance on scien-
tific code. Proceedings of the IEEE: Special Issue on Computer Performance Evaluation,
81(8):1166-1178, Aug. 1993.

[50] Tien-Pao Shih and Edward S. Davidson. Grouping array layouts to reduce communica-
tion and improve locality of parallel programs, In 1994 International Conference on Par-
allel and Distributed Systems, pages 558-566, Hsinchu, Taiwan, R.O.C., December
1994.

[51] Karen A. Tomko and Santosh G. Abraham, Data and program restructuring of irregular
applications for cache-coherent multiprocessors, In 1994 Proc. International Conference
on Supercomputing, pages 214-255, Manchester, England, July 1994.

[52] Daniel Windheiser, Eric L. Boyd, Eric Hao, Santosh G. Abraham, Edward S. Davidson.
KSR1 Multiprocessor: Analysis of Latency Hiding Techniques in a Sparse Solver. In
Proc. 7th International Parallel Processing Symposium, Newports Beach, California,
April, 1993.

[53] Alexandre E. Eichenberger and Edward S. Davidson. Efficient Formulation for optimal
modulo schedulers, In Proc. Conference on Programming Language Design and Imple-
mentation, June 1997.

[54] Alexandre E. Eichenberger. Modulo Scheduling, Machine Representations, and Regis-
ter-Sensitive Algorithms, Ph.D. Thesis, Dept. of Electrical Engineering and Computer
Science, University of Michigan, December 1996.

[55] Alexandre E. Eichenberger and Edward S. Davidson. Register allocation for predicated
code, In Proc. 28th Annual International Symposium on Microarchitecture, pp 180-191,
November 1995.

[56] Waleed M. Meleis and Edward S. Davidson. Optimal local register allocation for a mul-
tiple-issue machine, In Proc. International Conference on Supercomputing, pp 107-116,
July 1994.

226

[57] Alexandre E. Eichenberger and Santosh G. Abraham. Modeling load imbalance and
fuzzy barriers for scalable shared-memory multiprocessors, In Proc. 28th Hawaii Inter-
national Conference on System Sciences, pp 262-271, January 1995.

[58] John Nguyen, Compiler Analysis to Implement Point-to-Point Synchronization in Paral-
lel Programs, Ph.D Thesis, Dept. of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1993.

[59] R. Saavedra, R. Gaines, and M. Carlton. Micro benchmark analysis of the KSR1. In
Supercomputing, pp. 202-213, November, 1993.

[60] J. P. Singh, W. Dietrich-Webber, and A. Gupta. Splash: Stanford Parallel Application
for Shared-Memory. Technical Report. 596, Stanford, April 1991.

[61] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh,, and A. Gupta. The SPLASH-2 Programs:
Characterization and Methodological Considerations, In Proc. 22nd Ann. International
Symposium on Computer Architecture, pp.24-36, 1995.

[62] D. Bailey, et al. The NAS Parallel Benchmark. Technical Report RNR-94-07, NASA
Ames Research Center, March 1994.

[63] A. Nanda and L. M. Ni. Benchmark workload generation and performance characteriza-
tion of multiprocessors, In Supercomputing ‘92, pp. 20-29, 1992.

[64] John L. Hennessy and David A. Patterson. Computer Architecture: A Quantitative
Approach, Morgan Kaufmann Publishers, Inc., 1990.

[65] Tien-Fu Chen. Data Prefetching for High-Performance Processors. Ph.D dissertation,
Department of Computer Science and Engineering, University of Washington, Seattle,
Washington, July 1993.

[66] Kyle Gallivan, William Jalby, Ulrike Meier, and Ahmed Sameh. The Impact of Hierar-
chical Memory Systems on Linear Algebra Algorithm Design. Technical report, Center
for Supercomputing Research and Development, University of Illinois, September 1987,
CSRD Rpt. No. 625.

[67] Michael Wolfe. Optimizing supercompilers for supercomputers. Research Monographs
in Parallel and Distributed Computing. The MIT Press, Cambridge, Massachusetts,
1989.

[68] S. L. Graham, P. B. Kessler, and M. K. McKusock. Gprof: a call graph execution profiler.
In Proc. 1982 SIGPLAN Symp. Compiler Construction, pages 120-126, June 1982.

[69] W. Y. Chen. Data preload for superscalar and VLIW processors. Ph.D thesis, Depart-
ment of Electrical and Computer Engineering, University of Illinois, Urbana-Cham-
paign, Illinois, 1993.

[70] S. McFarling and J. L. Hennessy. Reducing the cost of branches. In Proc. 13th Annual
International Symposium Computer Architecture. Tokyo, Japan, pages 396-403, June
1986.

[71] S. Fortune and J. Wyllie. Parallelism in random access machines. In Proc. ACM Symp.
on Theory of Computing, pages 114--118. ACM Press, 1978.

227

[72] Michel Dubios and Faye A. Briggs. Effect of cache coherency in multiprocessors. In
IEEE Transactions on Computers, Vol. C-31, No. 11, pages 1083-1099, November 1982.

[73] Per Stenstrom, A Survey of Cache Coherence Schemes for Multiprocessors. Computer,
Vol. 23, No.6, June 1990, pp.12-24.

[74] Milo Tomasevic and Veljko Milutinovic (editors), The Cache Coherence Problem in
Shared-Memory Multiprocessors: Hardware Solutions, IEEE Computer Society Press,
1993.

[75] Milo Tomasevic and Veljko Milutinovic (editors), The Cache Coherence Problem in
Shared-Memory Multiprocessors: Software Solutions, IEEE Computer Society Press,
1993.

[76] A User’s Guide to PICL: A Portable Instrumented Communication Library. Technical
Report, ORNL/TM-11616, Oak Ridge National Laboratory, Oak Ridge, October 1990.

[77] Michael T. Heath and Jennifer E. Finger. ParaGraph: A Tool for Visualizing Perfor-
mance of Parallel Programs. User’s Guide, Oak Ridge National Laboratory, Oak Ridge,
June 1994.

[78] J. C. Yan, S. R. Sarukkai, and P. Mehra. Performance measurement, visualization and
modeling of parallel and distributed programs using the AIMS toolkit". Software Prac-
tice & Experience. April 1995. Vol. 25, No. 4, pages 429-461

[79] Convex Computer Corp. CONVEX CXtrace User’s Guide, 1st Ed., Convex Press, March
1994.

[80] Rajiv Gupta. Synchronization and communication costs of loop partitioning on shared-
memory multiprocessor systems. In Proceedings of the International Conference on Par-
allel Processing, pp. 23-30, 1989.

[81] Alexandre E. Eichenberger and Santosh G. Abraham. Impact of load imbalance on the
design of software barriers. In Proceedings of the International Conference on Parallel
Processing, volume II, pp. 63-72, 1995.

[82] J. S. Emer and D. W. Clark. A Characterization of Processor Performance in the VAX-
11/780, in Proc. of the International Symposium on Computer Architecture, pp. 301-309,
June 1984.

[83] James R. Larus, Efficient program tracing, Computer, pages 52,-61, IEEE, May 1993.

[84] Kendall Square Research. KSR1 Principles of Operation. 1992.

[85] Eric J. Koldinger, Susan J. Eggers, and Henry M. Levy, On the validity of trace-driven
simulation for multiprocessors, In Proc. 18th Ann. International Symposium on Com-
puter Architecture, pages 244-253, 1991.

[86] Anoop Gupta and Wolf-Dietrich Weber, Cache invalidation patterns in shared-memory
multiprocessors, IEEE Transactions on Computers, pages 794-810, Vol. 41, No. 7, July
1992.

228

[87] J-D Wellman and E. S. Davidson. The Resource Conflict methodology for Early-Stage
Design Space Exploration of Superscalar RISC Processors, In Proceedings of the 1995
International Conference on Computer Design , Oct 2-4, 1995, pp. 110-115.

[88] J-D Wellman. Processor Modeling and Evaluation Techniques for Early Design Stage
Performance Comparison, Ph.D. Dissertation, Department of Electrical Engineering
and Computer Science, The University of Michigan, Ann Arbor, Michigan, 1996.

[89] Andrew W. Wilson Jr. Multiprocessor cache simulation using hardware collected
address traces, In Proc. 23rd Annual Hawaii International Conference on System Sci-
ences, Vol. I, pages 252-260, IEEE Computer Society Press, 1990.

[90] Mark D. Hill, Dinero IV Trace-Driven Uniprocessor Cache Simulator, http://
www.cs.wisc.edu/~markhill/DineroIV, January 1998.

[91] Sanjay J. Patel, Marius Evers, and Yale N. Patt, Improving trace cache effectiveness
with branch Promotion and trace packing, In Proceedings of the 25th International Sym-
posium on Computer Architecture, Barcelona, June 1998.

[92] D.M. Tullsen, S.J. Eggers, and H.M. Levy, Simultaneous multithreading: maximizing
on-chip parallelism. In 22nd Annual International Symposium on Computer Architec-
ture, pp. 392-403, June 1995.

[93] Edward S. Tam and Edward S. Davidson. Early Design Cycle Timing Simulation of
Caches. Technical Report CSE-TR-317-96, University of Michigan, 1996.

[94] D. Burger, T. Austin, and S. Bennett. The SimpleScalar tool set, version 2.0. Technical
Report #1342, University of Wisconsin - Madison Technical Report, June 1997.

[95] E. A. Brewer, C. N. Dellarocas, A. Colbrook, and W. E. Weihl. PROTEUS: A High-Per-
formance Parallel-Architecture Simulator. Technical Report MIT/LCS/TR-516, MIT,
September, 1991.

[96] S. R. Goldschmidt and H. Davis. Tango Introduction and Tutorial. Technical Report
CSL-TR-90-410, Stanford University, 1990.

[97] Stephen Goldschmidt. Simulation of Multiprocessors: Accuracy and Performance. Ph.D.
Thesis, Stanford University, June 1993.

[98] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete
Computer Simulation: The SimOS Approach, In IEEE Parallel and Distributed Tech-
nology, Fall 1995.

[99] KSR1 Technical Summary, Kenall Square Research Corporation, Waltham, MA, 1992.

[100] Rabin A. Sugaumar and Santosh Abraham. Efficient simulation of caches under optimal
replacement with applications to miss characterization. In ACM SIGMETRICS Confer-
ence on Measurement and Modeling of Computer Systems, pages 24-35, Santa Clara,
California, May 1993.

[101] Craig B. Stunkel, Bob Janssens and W. Kent Fuchs. Address tracing for parallel
machines. Computer, Vol.24, No.1, Jan. 1991, pp. 31-38.

229

[102] Hsien-Hsin Lee and Edward S. Davidson. Automatic Parallel Program Conversion from
Shared-Memory to Message-Passing. Technical Report CSE-TR-263-95, Department of
Electrical Engineering and Computer Science, University of Michigan, October, 1995.

[103] Chau-Wen Tseng, Jennifer M. Anderson, Saman P. Amarasinghe, and Monica S. Lam,
Unified compilation techniques for shared and distributed address space machines, In
Proc. 1995 International Conference on Supercomputing, pages 67-76, Barcelona, Spain,
July 3-7, 1995.

[104] Horst Simon. Partitioning of unstructured problems for parallel processing. Computing
Systems in Engineering, 2(2/3):135-148, 1991.

[105] George Karypis and Vipin Kumar. A Fast and High Quality Multilevel Scheme for Parti-
tioning Irregular Graphs, Technical Report TR 95-035, Dept. Computer Science, Univer-
sity of Minnesota, 1995.

[106] Robert Leland and Bruce Hendrickson. An empirical study of static load balancing algo-
rithms. In Proceedings of the Scalable High Performance Computing Conference
(SHPCC-94), pages 682-685, 1994.

[107] Jude A. Rivers and Edward S. Davidson, Sectored Cache Peformance Evaluation: A Case
Study on the KSR-1 Data Subcache, Technical Report CSE-TR-303-96, University of
Michigan, September 1996.

[108] Milo Tomasevic and Veljko Milutinovic, Hardware solutions for cache coherence in
shared-memory multiprocessor systems, In The Cache Coherence Problem in Shared-
Memory Multiprocessors: Hardware Solutions, pages 57-67, IEEE Computer Society
Press, 1993.

[109] A. Gupta, J. L. Hennessy, K. Gharachorloo, T. Mowry, and W.D. Weber, Computative
evaluation of latency reducing and tolerating techniques, In Proc. 18th Annual Interna-
tional Symposium on Computer Architecture, pages 254-263, Toronto, May 1991.

[110] J. B. Carter, J. K. Bennett, and W. Zwaenepoel, Techniques for reducing consistency-
related information in distributed shared memory systems, ACM Transactions on Com-
puter Systems, pages 205-243, Vol. 13, No. 3, August 1995.

[111] David Culler, Jaswinder P. Singh, and Anoop Gupta. Parallel Computer Architecture -
Hardware Software Interactions, Alpha Draft, Morgan Kaufmann Publishers, 1997.

[112] Guang R. Gao, Lubomir Bic, and Jean-Luc Gaudiot. Advanced Topics in Dataflow Com-
puting and Multithreading, IEEE Computer Science Press, 1995.

[113] MPI: A Message-Passing Interface Standard. The Message Passing Interface Forum
(MPIF), June 1995.

[114] Ten H. Tzen and Lionel M. Ni. Trapezoid self-scheduling: A practical scheduling scheme
for parallel compilers. IEEE Transcations on Parallel and Distributed Systems, pp. 97-
98, March 1993.

[115] C. D. Polychronopoulos and D. J. Kuck. Guided self-scheduling: A practical scheduling
scheme for parallel supercomputers. IEEE Transcations on Computers, C-36(12):1425-
1439, December 1987.

230

[116] Hsien-Hsin Lee and Edward S. Davidson. Automatic Generation of Performance Bounds
on the KSR1. Technical Report CSE-TR-256-95, The University of Michigan, August
1995.

[117] F. H. McMahon. The Livermore Fortran Kernels: A Computer Test of the Numerical Per-
formance Range, Technical Report UCRL-5357, Lawrence Livermore National Labora-
tory, December, 1986.

[118] J. C. Yan and S. R. Sarukkai. Analyzing parallel program performance using normal-
ized performance indices and trace transformation techniques". Parallel Computing.
Vol. 22, No. 9, November 1996. pages 1215-1237

[119] S. R. Sarukkai, J. C. Yan and M. Schmidt. "Automated Instrumentation and Monitoring
of Data Movement in Parallel Programs". In Proceedings of the 9th International Paral-
lel Processing Symposium, Santa Barbara, CA. April 25-28, 1995. pages 621-630

[120] P. Mehra, B. VanVoorst, and J. C. Yan. "Automated Instrumentation, Monitoring and
Visualization of PVM Programs". In Proceedings of the 7th SIAM Conference on Parallel
Processing for Scientific Computing. San Francisco, CA. February 15-17, 1995. pages
832-837

[121] Michael Wolfe. High Performance Compilers for Parallel Computing. Addison-Wesley,
1996.

