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Abstract

How should we teach machine learning to a
diverse audience? Is a ‘foundation-based’ ap-
proach appropriate or should we switch to
a ‘techniques-oriented’ approach? We argue
that the foundation-based approach is still
the way to go.

The foundation-based approach emphasizes
the fundamentals first, before moving to al-
gorithms or paradigms. Here, we focus
on three key concepts in machine learning
that cover the basic understanding, the al-
gorithmic modeling, and the practical tun-
ing. We then demonstrate how more sophis-
ticated techniques like the popular support
vector machine can be understood within this
framework.

1. Introduction

Machine learning, ‘the art of learning from data’, is
now a wide discipline attracting theorists and prac-
titioners from social media, biology, economics, en-
gineering, etc. The discipline represents a prevailing
paradigm in many applications: we don’t know the
solution of our problem, but we have data that rep-
resents the solution. A consequence is that the typ-
ical entry level machine learning class will consist of
a diverse audience as seen in most university offerings
– multiple backgrounds, motivations and goals. To
name a few cases: At the National Taiwan Univer-
sity, the 2011 machine learning class was of size 77

Appearing in Proceedings of the Workshop on Teaching Ma-
chine Learning, Edinburgh, Scotland, UK, 2012. Copyright
2012 by the author(s)/owner(s).

and consists of 42 students from computer science, 26
from electrical engineering, and other students from
finance, information management, mechanical engi-
neering and bio-engineering. At Rensselaer Polytech-
nic Institute, the 2011 machine learning class is of
size 50, consisting of 24 undergraduate and 26 grad-
uate students, whose majors are spread over com-
puter science, electrical engineering, information sci-
ence and engineering, physics, cognitive science, math-
ematics, chemistry and biology. At California Insti-
tute of Technology, the 2012 machine learning class
consists of 151 registered students coming from 15 dif-
ferent majors. The online version of the class (http:
//work.caltech.edu/telecourse) is vastly more di-
verse, having practitioners with minimal background
all the way to a winner of the US National Medal of
Technology.

Machine learning in many universities is commonly
listed as an advanced undergraduate course, relying on
some background in calculus, linear algebra and prob-
ability. We don’t know whether this status will go the
way of calculus and introductory computer program-
ming, with separate offerings for biology, management,
engineering, etc. But we do know that we have to
address the diversity challenge facing instructors now.
And, perhaps the most important choice to be made is
between solid foundations versus practical techniques
that can immediately be used. Of course, to keep a
student interested, some practical techniques must be
there, but where should the focus be?

It’s tempting to present the latest and greatest tech-
niques; that is certainly the sexiest way to go. A typ-
ical depth-based approach would focus on one or few
promising techniques, such as the support vector ma-
chine algorithm (Vapnik, 1998). The approach aims at
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examining the technique thoroughly, from its intuitive
and theoretical backbone to its heuristic and practical
usage. Students who are taught through this approach
can master the particular technique and exploit it ap-
propriately in their domain. However, restriction to
one or a few techniques has difficulty satisfying the
needs of a diverse audience.

The other extreme is the breadth-based approach. A
typical breadth-based approach travels through the
forest of learning paradigms and algorithms, jumping
from paradigm to paradigm, from algorithm to algo-
rithm. The goal is generally to cram enough together
in an attempt to be ‘complete’. An ambitious instruc-
tor may intend to cover supervised learning (including
nearest neighbors, radial basis functions, support vec-
tor machines, kernel methods, neural networks, adap-
tive boosting, decision trees, random forest); unsuper-
vised learning (including principal component analysis
and k-means clustering); probabilistic modeling (in-
cluding Gaussian processes and graphical models); re-
inforcement learning; etc. We can certainly see the ap-
peal of this approach to a diverse audience, but let’s
not forget that the student has to actually be able to
use the techniques in their domain. Students can eas-
ily get lost in this forest.

It is dangerous to have tools available to use
without knowing when and how to use them.

Given the plethora of open source implementations of
cutting edge techniques on the Internet. we can always
download the latest and greatest open-source imple-
mentation of the current cutting edge technique, for
example the support vector machine. So it seems that
the right place to start is the foundations, even for a
diverse audience. We can only argue from experience,
and we say this on the basis of more than a decade of
successful experience1 in teaching this material.

Foundations First. By foundations we do not
mean death by theory. To pull this off, it is neces-
sary to isolate the crucial core that all students should
know; the core that will enable them to understand
the map of machine learning and navigate through
it on their own. We have distilled a three-step core
that through experience works well, and we feel that
any student of machine learning who has mastered this
core is truly poised to succeed in any machine learning
application.

1Professor Y. Abu-Mostafa received the Caltech
Richard P. Feynman prize for excellence in teaching in
1996; Professor Hsuan-Tien Lin received the NTU out-
standing teaching award in 2011.

1. Learnability, approximation and generalization:
when can we learn and what are the tradeoffs?

2. Careful use of simple models: the linear model
coupled with the nonlinear transform is typically
enough for most applications. Only when it fails
should we go after a more complex model.

3. Noise and overfitting : how do we deal with the
adverse effects of noise in learning, in particular
by using regularization and validation.

We have observed that when equipped with these foun-
dations, the students, including both practitioners and
researchers, can then move on to one technique or an-
other with ease and are able to appreciate the larger
framework within which those techniques fit. We use
this core in our courses as the immutable foundation
for a short course in introductory machine learning
to both practitioners and researchers; we then com-
plement this foundation with specific techniques and
algorithms that we wish to emphasize within a partic-
ular context, and these specific techniques may change
from year to year.

In this position paper, we briefly introduce these three
key concepts in the foundation, and present a sim-
ple case of how to position new techniques within
this foundation. We welcome discussions on what
should be added or removed from the foundations. Our
hope is to highlight the foundation-based approach in
teaching machine learning, an approach that seems to
be getting neglected in current teaching trends that
mostly focus on presenting as many flashy techniques
as possible.

2. Learnability, Approximation and
Generalization

– what we see is not what we get

For beginners in machine learning, it is all too often
that they would throw data at a learning system and
be surprised when they come to deploy the learned sys-
tem on test examples. The first principle that should
be instilled early on is that what we see in-sample is
not always what we get out-of-sample. We need to em-
phasize that the out-of-sample performance is what
we care about, and this leads to a natural question:
how can we claim that learning (getting a low out-of-
sample performance) is feasible, while only being able
to observe in-sample? And so, we arrive at the logi-
cal reformulation of the learning task into two steps.

1. Make sure we have good in-sample performance;

2. Make sure in-sample performance reflects out-of-
sample performance.
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There are several advantages to emphasizing the two
step approach. First, it crystallizes the tradeoff be-
tween approximation (the ability to ensure step 1)
and generalization (the ability to ensure step 2). Sec-
ond, it clearly separates learning into the process we
can observe (step 1) and the process we cannot ob-
serve (step 2). Both steps are necessary, but there
is an asymmetry: since step 2 cannot be observed, it
must be inferred in a probabilistic manner. There is a
deep consequence of not being able to observe step 2,
namely that via powerful and abstract methods, we
must ensure it, lest it be our unseen Achilles heel. This
enables us to characterize successful learning accord-
ing to what is happening in step 1, in-sample, modulo
that we have ensured step 2. If we managed to get the
in-sample performance we want, then we are done, but
if not, we failed, but at least we will know we failed.

Contrast this with the typical approach of the begin-
ner: throw a complex model at the data and try to
knock down the in-sample error to get good in-sample
performance; then hope that things work out luckily
during deployment on test examples. This is not the
mode we advocate. The mode we advocate is ensure
step 2 and the try our best with the in-sample perfor-
mance.

We cannot guarantee learning. We can
‘guarantee’ no disasters. That is, after we
learn we will either declare success or failure,
and in both cases we will be right.

There are different levels of mathematical rigor at
which this message can be told, but we feel that the
essence of the message is a must. Armed with this
insight, the enlightened student will rarely falter. It
motivates them to understand when step 2 can be en-
sured and the need for the abstract side to learning. It
motivates the practical side too – knocking down the
in-sample performance.

In our teaching experience, we find that students from
diverse backgrounds are highly motivated after en-
countering the learnability issue, mostly because the
issue makes machine learning a non-trivial and fasci-
nating field to them.

3. Linear Models

– simple works well in practice

It is just a dogma that the beginner when faced with
the data must have a go at it with the latest and
greatest. Armed with an understanding of learnability,
approximation and generalization, students instantly
see how the linear model quantitatively ensures step 2

(generalization) by suitably controlling the dimension.
So all that remains is step 1, and efficient algorithms
exist to knock down the error. If that does not work,
careful use of the nonlinear feature transform usually
solves the problem. In fact, recent advances in large-
scale learning suggest that linear models are more suc-
cessful than current dogma gives them credit for (Yuan
et al., 2012).

So the recipe is simple. Try the linear model first.
It is simple and often effective and not much can go
wrong. If the in-sample performance of a linear model
is good, we confidently assert success. We always have
the option, later, to go with a more complicated model,
but with care. And, the linear model is typically the
building block for the most popular complex models
anyway.

In our teaching experience, we introduce the linear
models within three related contexts of classification,
regression, and probability estimation (logistic regres-
sion). Each context comes with learning algorithms
and good generalization. The algorithms illustrate dif-
ferent optimization methods: combinatorial, analytic,
and iterative, and so a lot of territory can be covered
early by the instructor. Students coming from diverse
backgrounds not only get the big picture, but also the
finer details in a concrete setting.

4. Noise and Overfitting

– complex situations call for simpler models

Overfitting, the troubling phenomenon where pushing
down the training error no longer indicates that we will
get a decent test error, is arguably one of the most
common traps for beginners. Intuitively, the ubiq-
uitous stochastic noise that corrupts any finite data
set can even lead the linear model astray. We should
also not lose sight of the other major cause of over-
fitting: deterministic noise, the extent to which the
target function cannot be modeled by our learning
model (Abu-Mostafa et al., 2012).

Whenever there is noise, extra precautions
are called for. This goes for stochastic as well
as deterministic noise.

It is counterintuitive to a student that if the target
function gets more complex we should choose a simpler
learning model. But, that is why proper understanding
of machine learning matters for all students, regardless
of what domain their application is in; what separates
the amateur from the professional is the ability to deal
with overfitting, in particular how to deal with both
types of noise.
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We recommend a substantive treatment of two basic
tools, regularization and validation. An understanding
of overfitting sets a perfect stage to introduce regular-
ization and validation. Regularization constrains the
model complexity to prevent overfitting, and valida-
tion allows one to certify whether a model is good or
bad.

These three core concepts: learnability, simple models
and overfitting continue to be crucial when we move
to the complex models. Each of those models have
their own ways of dealing with these issues and so the
background set by this core is the platform from which
to learn these more complex models (such as neural
networks or support vector machines).

5. Support Vector Machines?

We cannot avoid the more complex methods but the
advantage of having given the core is that students
are fully equipped to study any method independently.
For example, the neural network is just a cascade of
linear models. Ensemble methods are typically combi-
nations of linear models voted together in some prin-
cipled way. Support Vector Machines (SVM; Vapnik,
1998), which we now focus on, are linear models with a
‘robust’ formulation that can be solved with quadratic
programming; and, the nonlinear transform can be in-
corporated efficiently with SVM using the kernel trick.

One reason to choose SVM (for classification) is be-
cause it is currently the most popular. In reality, most
models are good, it’s just that SVM requires the least
amount of ‘expertise’ to use effectively. But given
an understanding on the foundations, the student is
equipped to understand the why and the how. Again
the discussion can be taken to a mathematical level of
the instructor’s choice, but the concepts will remain
firm.

How does SVM accomplish the two steps required for
learnability? Generalization is handled because the
model is simple - it is a linear model with an ingre-
dient of margin control to ensure the generalization
performance (step 2) via theoretical results.

What about getting good in-sample performance?
First, there is an efficient algorithm, based on
quadratic programming. And if that fails, we can ex-
ploit the nonlinear transform efficiently using a kernel.
What if our data is too large for general quadratic
programming tools? The many other tools that are
available for linear models, such as stochastic gradi-
ent descent (SGD) commonly used for linear logistic
regression, can be taken with linear SVM to deal with
scalability.

What about overfitting? We can efficiently estimate
the leave-one-out error and hence validate (certify) the
model. In addition, the primal form of SVM asks to
minimize the norm of the weight vector subject to fit-
ting the data - well, that is a form of regularization.

So we see why SVM is popular among the diverse ma-
chine learning crowd – lots of things are taken care of
automatically. That doesn’t mean that these things
cannot be done with neural networks. And there lies
the effectiveness of the foundation-based approach.
SVM is not some magic box. It is just one way of
realizing the three core concepts.

6. Conclusion

We discussed a proposed three-step core as a foun-
dation for machine learning in both practice and the-
ory. The three concepts cover the philosophical under-
standing (when learning is possible), the algorithmic
modeling (how to learn with simple models), and the
practical tuning (how to combat overfitting). We ar-
gue that the foundation can solidify the understanding
of students coming from diverse backgrounds, and can
be carried through to any technique, simple or com-
plex. Ironically, we are not proposing that we alter
the teaching to accommodate more diverse audiences.
Quite the opposite, the foundations-based approach is
all the more important for such audiences to ensure
that they use machine learning correctly.
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