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Abstract

In weakly supervised learning, unbiased risk esti-
mator (URE) is a powerful tool for training clas-
sifiers when training and test data are drawn from
different distributions. Nevertheless, UREs lead
to overfitting in many problem settings when the
models are complex like deep networks. In this
paper, we investigate reasons for such overfitting
by studying a weakly supervised problem called
learning with complementary labels. We argue
the quality of gradient estimation matters more in
risk minimization. Theoretically, we show that a
URE gives an unbiased gradient estimator (UGE).
Practically, however, UGEs may suffer from huge
variance, which causes empirical gradients to be
usually far away from true gradients during mini-
mization. To this end, we propose a novel surro-
gate complementary loss (SCL) framework that
trades zero bias with reduced variance and makes
empirical gradients more aligned with true gradi-
ents in the direction. Thanks to this characteristic,
SCL successfully mitigates the overfitting issue
and improves URE-based methods.

1. Introduction

In weakly supervised learning (WSL), learning algorithms
have to train classifiers under incomplete, inexact or inac-
curate supervision (Zhou, 2017), including but not limited
to semi-supervised learning (Chapelle et al., 2009), partial
labels (Jin & Ghahramani, 2002), noisy labels (Natarajan
et al., 2013; Patrini et al., 2017; Han et al., 2018a;b; Yu et al.,
2019; Xia et al., 2019), complementary labels (Ishida et al.,
2017; Yu et al., 2018; Ishida et al., 2019; Xu et al., 2020;
Feng et al., 2020), where the label distribution changes, and
positive-unlabeled data (Elkan & Noto, 2008; du Plessis

*Work done during an internship at RIKEN. 'National Taiwan
University 2RIKEN *The University of Tokyo. Correspondence to:
Yu-Ting Chou <r07922042 @csie.ntu.edu.tw>.

Proceedings of the 37" International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Gang Niu? Hsuan-Tien Lin! Masashi Sugiyama ?3

etal., 2014; 2015; Niu et al., 2016; Sakai et al., 2017; 2018),
unlabeled-unlabeled data (Lu et al., 2019; 2020), and other
similar settings (Bao et al., 2018; Ishida et al., 2018; Hsieh
et al., 2019), where the data distribution changes. Among
WSL methods, unbiased risk estimator (URE) is a powerful
tool: it evaluates the classification risk from training data
drawn from a distribution different from the test one, and
thus empirical risk minimization (Vapnik, 1992) is possible.
The success of URE is due to two orthogonal demands in
WSL for handling big data and complex data: URE poses
unconstrained optimizations so that it can handle very big
data by stochastic optimizers; URE is model-independent so
that it can handle complex data where the model is chosen
according to the data (e.g., image, text, or speech).

An important motivation of employing URE in WSL is that
URE enables estimation error bounds to guarantee statisti-
cal consistency. However, the consistency in the asymptotic
cases is not very meaningful in the finite-sample cases es-
pecially in deep learning (Zhang et al., 2017; Nagarajan &
Kolter, 2019). Despite its popularity and nice properties,
URE in du Plessis et al. (2015), Ishida et al. (2017) or Lu
et al. (2019) has inferior test performance to recent biased
methods in Kiryo et al. (2017), Ishida et al. (2019) and Lu
et al. (2020). When complex models like deep networks are
chosen as the classifiers, UREs suffer from severe negative
empirical risks during training, which is a sign of overfitting.
Even though the overfitting issue can be relatively mitigated
by keeping UREs non-negative, the mechanism behind how
UREs cause overfitting is still unknown. Thus, instead of a
theoretical motivation, this paper has a practical motivation
and focuses on understanding how UREs cause overfitting
and how to avoid such overfitting in algorithm design.

Learning with complementary labels (Ishida et al., 2017) is a
WSL problem of multi-class classification where classifiers
are trained from data with complementary labels (CL). A
CL specifies a class that an instance does not belong to, but
the trained classifier should still predict the correct labels.
Although CLs are less informative than ordinary labels, they
provide an alternative when ordinary labels are inaccessible
or costly to acquire. In this paper, we choose learning with
CLs to study the overfitting issue of UREs, as it combines
several practical advantages: first, CLs are easy to generate
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compared with partial labels and noisy labels; second, nega-
tive empirical risks are easy to occur; and third, it is easy to
experimentally analyze the bias and variance of empirical
gradients. With the help of such a case study, we can gain
a deep insight of UREs and lay the foundation for further
studies of UREs in other WSL problem settings.

Our contributions can be summarized in two folds. First of
all, we conduct a series of analyses to investigate reasons
for the overfitting issue. We show that due to the linearity
of the differential operator, any URE must give an unbiased
gradient estimator (UGE); however, UGE is not necessarily
good at gradient estimation though it is unbiased. During
training, only a single fixed CL could be acquired for each
instance, which causes empirical gradients given by a UGE
to be usually far away from true gradients. This illustrates
the difference between validation and training:

* In validation, the classifier is fixed and the data is repeat-
edly sampled, and then UGE is good at gradient estima-
tion (which can be theoretically guaranteed by concentra-
tion inequalities).

* In training, the data are fixed and based on these data the
classifier is iteratively updated, and then UGE might be
really bad at gradient estimation.

* Theoretically speaking, good validation can imply good
training if the model is simple, while good validation may
still result in poor training if the model is complex (Zhang
et al., 2017; Nagarajan & Kolter, 2019).

Unfortunately, UGEs in training suffer from huge variance
in learning with CLs. Here, the root cause of overfitting is
that only one fixed CL is available for each instance, and the
direct cause is the huge variance of UGESs and the distance
from empirical to true gradients. The root cause also exists
in other WSL problem settings, e.g., partial or noisy labels.
Notice that the quality of gradient estimation matters more
than risk estimation in risk minimization, since stochastic
optimizers mainly rely on empirical gradients.

Next, we propose a novel framework named surrogate com-
plementary loss (SCL) to improve gradient estimation. Re-
call that the classification error is defined as the expected
zero-one loss over the test distribution. Existing URE-based
methods first replace the zero-one loss with a surrogate loss
to obtain the risk, and then rewrite the risk into an expecta-
tion over the training distribution. We call it complementary
surrogate loss since replacing is before rewriting. On the
other hand, our framework first rewrites the error into an
expectation over the training distribution and then replaces
the zero-one loss with a surrogate loss, namely, rewriting
before replacing. Rewriting the error is nicer since the zero-
one loss has many nice properties while the surrogate loss
is just arbitrary. In our experiments, SCL-based methods
outperform URE-based methods, where SCL successfully
reduces the variance of empirical gradients and makes them

more aligned with true gradients in the direction.

The rest of the paper is organized as follows. We introduce
WSL problem settings and the overfitting issue in Section 2.
In Section 3, we propose the SCL framework. In Section 4,
we analyze empirical gradients to justify our claims.

2. The Use of Unbiased Risk Estimators

In this section we introduce the usage of unbiased risk esti-
mators in several weakly supervised learning settings. Then
we zoom into the problem of learning with complemen-
tary labels, and show the relationship between negative risk
problem and overfitting.

2.1. Related WSL Settings

The following problems are typical examples where UREs
fail under weak supervision. The negative empirical risk
can happen when the loss functions are not specifically
restricted, causing overfitting. Biased loss functions or non-
negative correction methods are introduced to mitigate such
issues in related literature.

Noisy Label Learning: Noisy label learning studies
about learning when training labels flip according to some
underlying distribution. A common assumption is the class
conditional noise setting where the noisy label depends on
its ordinary label. Natarajan et al. (2013) first provided a
URE for arbitrary loss in the binary case, and provided per-
formance guarantee. To ensure the convexity of the rewrit-
ten loss function, they require the original surrogate loss to
satisfy a symmetric property. Patrini et al. (2017) extends
to multiclass classification and proposed two loss correc-
tion methods: backward correction and forward correction.
Backward correction involves a matrix inversion and gives
an unbiased estimator of the original loss. Forward cor-
rection corrects the prediction with a matrix multiplication
and can be added as an additional layer to neural networks.
The authors showed that forward correction performs bet-
ter than backward correction, and hinted the reason to be
optimization related.

Positive-Unlabeled (PU) Learning: In binary classifica-
tion, the labeled data consists of two sets, the positive (P)
class and the negative (N) class. PU learning studies when
labeled data only consists of positive examples, while we
have unlabeled (U) data consisting of both positive and neg-
ative examples. Elkan & Noto (2008) proposed to learn
from assigning weights to unlabeled examples. du Plessis
et al. (2014) proposed a URE of non-convex losses, and
du Plessis et al. (2015) extends it further to a more general
framework with convex formulation. Kiryo et al. (2017)
observed the overfitting issue of unbiased PU learning and
proposed a non-negative risk estimator to fix the problem.
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Unlabeled-Unlabeled (UU) learning: In binary classifi-
cation, UU learning considers the setting when all labels
are unknown. Lu et al. (2019) discovers that if the two sets
of data have different class priors, a URE can be derived to
learn from such data. However, the unbiased UU learning
also encounters severe overfitting due to negative empirical
risk. Lu et al. (2020) proposed a non-negative corrected risk
estimator to fix the problem.

2.2. Learning with Complementary Labels

In the following part, we first introduce related work of
learning with complementary labels, then formally define
the URE formulation and the negative risk effect.

In Ishida et al. (2017), the first work to introduce the setting
of complementary labels, a URE can be obtained when a
loss function satisfies the symmetric property, under uni-
form assumptions. Yu et al. (2018) provides a loss correc-
tion method for softmax cross entropy loss, and shows that
non-uniform complementary labels can also be learned if
the complementary transition matrix is known. Continu-
ing in the uniform complementary assumption of Ishida
et al. (2017), Ishida et al. (2019) generalizes the URE for
arbitrary loss functions and models, and proposes a non-
negative correction and a gradient ascent method to ac-
count for overfitting. Several studies have also extended
to learning with multiple complementary labels (Feng et al.,
2020), and its combination with unlabeled data (Cao & Xu,
2020). The flexibility of CLs makes it easy to use in settings
such as online learning (Kaneko et al., 2019), generative-
discriminative learning (Xu et al., 2020), and noisy label
learning (Kim et al., 2019).

Ordinary Learning: We start by reviewing the setting
and introduce notations in ordinary learning. Consider the
problem of K class classification (K > 2), where [K] =
{1,2,..., K} is the label set. Let D be a joint distribution
over the feature set X and label set Y, where we sample
input feature 2 € R? and label y € [K]. Given training
samples {(z;,v;)}7 . the goal of the learning algorithm
is to learn a classifier f(x) : R? — [K] which predicts
the correct label from a given input x. The classifier f is
implemented with a decision function g : R¢ — RX by
taking the argmax function f(x) = arg max; g(x);. For a
label y and a decision function output g(x), the loss function
is defined as a nonnegative function ¢ : [K] x RX — R*.
Finally, we define the risk as the expected loss of g over
distribution D:

R(g;¢) = Ex,yv)~p[l(Y,g(X))]. (D

Complementary Learning: In complementary learning,
the data distribution is switched to D = X x Y where the
training samples given to the learner become {(x;,7;)}7™ ;.

For instance x;, the complementary label (CL) ¥, is a class
in [K] that ;; does not belong to, satisfying g, # y;. In this
case, the loss function ¢ cannot be used directly since the
ordinary target y; is not given. In the following part, we
review the derivation of URE using backward loss rewriting
process (Patrini et al., 2017; Ishida et al., 2019).

Unbiased Risk Estimator: In this part, we follow the
assumption of class conditional complementary transi-
tion as in related work, assuming the transition matrix
T invertible, where T;; = P(Y = j | Y = ) and
T;; = 0 for all . We borrow the following notation
from Ishida et al. (2019). The loss vector is £(g(x)) =
[0(1,g(x)),4(2,g9(x))..L(K,g(x))], and let e; € {0, 1}X
denote the one-hot vector in which the i-th entry is one.

Proposition 1. The ordinary risk can be transformed as

R(g:0) = Ex yypleg (T HUg@)). @)

That is, we obtain an unbiased risk estimator (URE):

R(g:0) =E, 5 5T g(x)] = R(g; () ()
where { is the following rewritten loss:

U(7.9(x)) = e (T~ 1)l(g(x)). )

This proposition implies the expectation of 0(y,g(z)) under
distribution D is equivalent to the ordinary risk R(g; ¢).

Uniform Assumption: In the rest of this paper, we as-
sume CLs are sampled uniformly from [K] \ {y}, for a
better comparison with Ishida et al. (2019). By plugging in
the uniform assumption 7' = =2~ (1, — I};), we have the

following formulation of /,

K
1. 9(2) = —(K - 1)0F.9() + 3 (.g(x)). )

Jj=1

This URE approach minimizes £ over the training distribu-
tion, and theoretical results from Ishida et al. (2017) proved
the consistency of the risk estimator under specific losses.

2.3. Negative Risk and Overfitting

However, URE tends to have poor empirical performance.
Ishida et al. (2019) reported that minimizing URE causes the
empirical risk to go negative, which is a sign of overfitting.
It is clear that the negative loss term —(K — 1)£(7, g(x))
in ¢ (Equation 5) is the source of negativity. Such negative
term occurs in common class conditional complementary
transition as long as all diagonal elements of 7" are zero.

Recall the URE in Equation 3, in expectation has minimum
value 0 when the classifier has no error. However, when



Unbiased Risk Estimators Can Mislead: A Case Study of Learning with Complementary Labels

Empirical risk
Empirical risk

o o T ORD
; FIXED
15
—— RAND
= -20
a 0 100 150 200 250 0o 0 50 100
Epach

(a) MNIST, Linear

(b) MNIST, MLP

Empirical risk
W

150 200 250 00 Q 50 100 150 20 250 00
Epoch Epach

(c) CIFAR-10, DenseNet

Figure 1. Empirical risk minimization comparison

minimizing URE empirically, the non-negative lower bound
does not remain. We claim that the main difference between
the expectation and its empirical realization is the label
distribution: only single 7 is given for each instance in prac-
tice, while the expectation is calculated over all possible .
The URE only stays non-negative when taken expectation,
which is not realistic.

Negative Risk Experiment: To show the difference be-
tween theory (expectation) and practice, we use an experi-
ment to demonstrate how the empirical distribution of CLs
leads to negative empirical risk during training. Three dif-
ferent label distributions are given:

1. Ordinary Learning (ORD): The supervised learning base-
line, which the ordinary label y is given. This is also the
case where the complementary label is marginalized out
by taking expectation.

2. Fixed Complementary Learning (FIXED): The realistic
complementary learning scenario, for each instance z
only a fixed CL ¥ is given.

3. Random Complementary Learning (RAND): The ¥ of
each instance is randomly sampled from [K] \ {y} in
each epoch. This setting acts as a stochastic version of
ORD on 7.

In this experiment, we used the cross-entropy loss as ¢ for
ordinary learning (ORD) and / for complementary learning
(FIXED, RAND). For MNIST, we use linear model and
single hidden layer MLP (d — 500 — 10) as learning models;
for CIFAR-10, we used ResNet-34 (He et al., 2016) and
DenseNet (Huang et al., 2017). The models are trained with
Adam (Kingma & Ba, 2015) optimizer at a fixed learning
rate of 10~ for 300 epochs.

Results are shown in Figure 1. FIXED suffers from severe
negative risk in comparison to ORD and RAND, which is
a clear sign of overfitting to the given CL. The problem
worsen as flexible models are used, matching results from
Ishida et al. (2019). However, note that RAND yields a
significantly different result from FIXED even though they
are trained on the same objective. Though the risk of RAND

fluctuates considerably due to the changes in each epoch,
it does not stay negative, as we can view RAND as an ran-
domized approximation of ORD. The results also show that
the estimated risk diverges far from the ordinary risk as the
training goes on, and the gap increases with the training
epochs. In this case, consistency guarantees become inef-
fective since the risk estimation error keeps increasing as
training goes on. That is, the behavior of URE and the ordi-
nary risk is extremely different in the empirical setting, even
if statistical properties such as unbiasedness and consistency
can be proven.

Risk Correction Methods: Ishida et al. (2019) proposed
two correction methods to mitigate the problem. First, the
non-negative loss correction (NN), which enforces non-
negativity to the decomposed risk of each class. Second,
namely the gradient ascent correction (GA) which enforces
a reverse gradient update to the model parameters when the
decomposed risk goes negative or under a certain thresh-
old. GA can be viewed as a more aggressive correction
than NN. The correction methods show improvements in
various experiments, and similar techniques have also been
applied in other WSL problems (Kiryo et al., 2017; Lu et al.,
2020). However, such correction methods are still based
on URE and lack theoretical motivation, the fundamental
difference between risk and URE are not solved. We will
include experiment results of these methods in the following
sections.

3. Proposed Framework

In this section, we propose a complementary learning frame-
work that avoids the negative risk problem of URE. To
clearly distinguish between complementary learning and
ordinary learning, we rethink the relationship between input
features and labels: An ordinary label provides a positive
feedback to the given class, while a CL provides a nega-
tive feedback to the given class. The maximum likelihood
approach is commonly used in ordinary learning when we
have probability estimation from the model, by maximiz-
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ing the conditional likelihood given the training data. The
commonly used softmax cross-entropy loss function in deep
learning is a typical example by combining softmax acti-
vation function and the maximum likelihood approach. In
complementary learning, given only CLs as training data,
we propose to apply the minimum complementary likeli-
hood approach, through a proxy loss. In the following of
this section, we propose a new framework that consists
complementary 0-1 loss and its corresponding surrogate
complementary loss (SCL).

3.1. Complementary 0-1 Loss

From the classification error perspective: In ordinary learn-
ing, zero error is obtained when the classifier predicts the
correct class as the label, and has error otherwise. In com-
plementary learning, given only limited information, we can
only be sure that prediction error occurs when the CL is
predicted by the classifier. With the rules above, we for-
mally define the ordinary classification error and a novel
complementary classification error:

Definition 1. (Multiclass) classification error, or 0-1 loss:

tor(y, f(z)) =y # f(@)]. (6)

Definition 2. Complementary classification error, or com-
plementary 0-1 loss:

lo1(y, f(x) = [y = f(@)]. (N

fo1 is 1 when the predicted class matches theﬁCL, which
indicates classification error. By minimizing ¢y, we can
minimize the conditional probability output of CLs.

Proposition 2. The complementary 0-1 loss is a constant
multiple of the URE of the classification error.

R(g;£o1) = (K — 1)R(g; lo1) 3)

In other words, the URE of the classification error has the
same minimizer with the complementary 0-1 loss:

E(z@)wﬁ[zol (yv g(x))] 9

Thus, existing guarantees show that we can learn with CLs
via empirical risk minimization from R(g; fo1).

3.2. Surrogate Complementary Loss

To minimize the non-convex fy;, a common approach in
statistical learning is to select a convex surrogate loss to
approximate the target loss. In order to minimize the output
of the label prediction, which is the opposite of most com-
mon surrogate functions, we require a new type of surrogate
complementary loss (SCL) for this problem setting. Differ-
ent from ordinary surrogate losses which are non-increasing
functions of the label class output, SCLs are non-decreasing
functions of the CL class output.

Baseline Methods: To better distinguish from URE-
based methods, we use ¢ to denote the SCL loss functions.
Here we denote the probability output p € AK~1if g
passes through a softmax layer, where AX~1 is the K-
dimensional simplex. Existing work on complementary
learning has resulted in similar patterns that minimize la-
bel class prediction output. We include these methods as
baselines in our experiments.

1. Forward correction (SCL-FWD) in Yu et al. (2018): a
forward loss correction method given transition matrix
T:

orwp (7. 9(2)) = L7, T ' p). (10)

2. Negative learning loss (SCL-NL) in Kim et al. (2019): a

modified log loss for negative learning with CLs:

N, g(x)) = —log(1 — py). (11)
3. Exponential loss (SCL-EXP):
PExp(Y, g()) = exp(py)- (12)

As we unify the above-mentioned losses into the surrogate
complementary loss ¢ framework. These loss functions
actually all accomplish the same purpose: minimizing the
complementary 0-1 loss by using its loss as surrogate:
Here we compare the proposed SCL learning process with
the URE learning process, as shown in Figure 2. We use ap-
proximation step to denote the process of replacing 0-1 loss
with its surrogate loss, and the estimation step represents
rewriting the risk from ordinary distribution to complemen-
tary distribution. Given the same goal of minimizing the
true classification risk Ry, the two frameworks follow a
different order in the learning steps. The URE framework
follows the traditional statistical learning framework by ap-
proximating Ry; with Ry, and then performs the estimation
step by rewriting the risk into Fz for the complementary
distribution. The SCL framework, on the other hand, per-
forms the approximation step after the estimation step by
first rewriting the classification risk Ry, to complementary
classification risk Rgg, then perform the approximation step
by using the SCL loss ¢, resulting in the objective R.

The ordinary surrogate loss ¢ in URE is used for ordinary
labels, which serves as an upper bound proxy in order to
minimize the 0-1 classification error. However, when the
training data distribution is changed into CLs, the loss is
rewritten and the non-negativity of ¢ no longer remain, caus-
ing the negative risk term. That is, a ripple effect of error
happens when the approximation error of the surrogate loss
is amplified by the estimation step. In the proposed SCL
framework, we sidestep this question by placing the sur-
rogate process after the risk rewriting. In this way, the
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Figure 2. Comparison of URE learning process with the SCL framework.

Table 1. Classification accuracies

DATA SET + MODEL URE | NN GA | SCL-FWD SCL-NL SCL-Exp
MNIST + LINEAR 0.8503 | 0.8182 0.8193 0.9 0.9 0.9019
MNIST + MLP 0.8012 | 0.8665 0.9088 0.8965 0.9469 0.9251
KuzUSHI-MNIST + LINEAR  0.5613 | 0.5331 0.4992 0.6056 0.6056 0.6132
KuzUSHI-MNIST + MLP 0.5433 | 0.5683 0.6567 0.6445 0.7644 0.7184
FASHION-MNIST + LINEAR  0.7675 | 0.7755 0.7672 0.8274 0.8274 0.8282
FASHION-MNIST + MLP 0.7401 | 0.7829 0.8019 0.8372 0.8456 0.835
CIFAR-10 + RESNET 0.1091 | 0.3078 0.3738 0.5058 0.4713 0.492
CIFAR-10 + DENSENET 0.2909 | 0.3379 0.4108 0.5457 0.5394 0.5435

surrogate loss ¢ is directly applied on its target £;, and
the negative loss problem is avoided. Furthermore, it is not
only the statistical properties that matters to surrogate loss,
optimization properties such as smoothness and curvature
are also important to consider. As the estimation process of
URE damages the original properties of ¢, the optimization
properties of ¢ are preserved.

3.3. Classification Accuracy

In this section, we use an experiment to compare the
performance of each method. Specifically, the methods
can be classified into two categories: URE-based meth-
ods, and SCL-based methods. In URE-based methods,
we have URE, URE with negative risk correction (NN),
and URE with gradient ascent (GA). In SCL-based meth-
ods, we have SCL-FWD, SCL-NL, and SCL-EXP. We
used the Adam optimizer with learning rate selected from
{1071,1072,1073,10~*,1075} and trained the models for
300 epochs.

The testing accuracy is shown in Table 1. The URE per-
forms poorly compared to other methods, especially in more
flexible models. Even though NN and GA improve on URE
in most tasks, the SCL methods still outperform them by a
significant gap. These results justify our claims. Although
URE is an estimation of the risk R, with statistical guaran-
tees, in practice, it does not perform well as a classifier. On
the other hand, although the proposed SCL framework is
biased to the risk R, introducing such bias towards mini-
mizing the CL output yields superior results compared to
URE, avoiding the negative risk issue. In the next section,

we discuss why the difference between the two frameworks
result in such a performance gap by analyzing the loss gra-
dient during training.

4. Gradient Analysis

In this section, we discuss how the proposed SCL frame-
work outperforms URE through two gradient analysis exper-
iments. As mentioned in Section 2, the URE diverges widely
from the risk itself when only a single CL is used to estimate
the risk. Here we further discuss how the SCL framework
gives such improvement by rearranging the learning process.
The discussion will focus on the loss gradient: in the experi-
ments, they are the stochastic gradient (SGD) in mini-batch
optimization specifically. The analysis can be viewed as two
parts: gradient directional estimation, and the bias-variance
tradeoff of the gradient estimation error.

4.1. Directional Similarity

Since the URE is an estimator of the risk function, we expect
its optimization to be similar to the risk function. Here we
prove that the gradient of URE is also an unbiased gradient
estimator (UGE) of the ordinary gradient.

Proposition 3. The gradient of an unbiased risk estimator
is unbiased to the ordinary risk gradient. That is, for an
instance (x,y) we have,

Ey1y [Vol(7, 9(x))] = Vol(y,g(z)) (14)

Thus, the gradient of the complementary loss / is unbiased
with respect to the gradient of the ordinary loss, in our
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Figure 3. Cosine similarity comparison.

case the gradient of cross entropy loss. However, does that
lead to similar performance with ordinary learning? Our
experimental results show that URE methods learn poorly
through unbiased gradient estimation.

In this section, we use an experiment to compare the gra-
dient direction of ordinary learning and its complementary
learning counterparts. We compare the complementary loss
gradient directions with the ordinary gradient direction of
the cross entropy loss Vg/(y, g(x)) = —Vg log(py).

The quality of the complementary gradient depends on its
similarity with the ordinary gradient direction, where the
similarity of two gradient directions is measured by the
cosine similarity S of two gradient vectors a and b, where
S(a,b) = (a - b)/|al|b|. For the gradient directions, a
reasonable assumption is S should be as large as possible,
indicating a direction more similar to the ordinary gradient.
In this experiment, we compare two gradient settings:

1. Expected: The averaged gradient computed over all pos-
sible CLs of an instance x.

2. Fixed: The gradient computed on a single CL of an in-
stance x.

We compared three complementary learning methods on
their approximation of the direction of the ordinary gradient:
URE, NN, SCL-EXP. To ensure fair comparison, the model
is updated only with ordinary labels in each epoch to avoid
gradient error accumulation, the complementary gradients
were computed only for comparison and were not updated

to the model. The SGD optimizer was used with a learning
rate fixed at 102, trained for 300 epochs.

As the results show in Figure 3, URE achieves an ideal gra-
dient direction only in the case of expected CLs. In the fixed
case, UGE results in very different gradient directions with
respect to the ordinary gradient direction. This shows that in
the case when each x is fixed to a y, UGE does not estimate
a reliable direction. The UGEs of each 7y have diverged
directions in order to maintain the unbiasedness. Unsurpris-
ingly, the SCL methods provide better approximations of
the ordinary gradient, since it does not diverge by focusing
on the CL direction £y;.

4.2. Bias-Variance Tradeoff

In this part, we further analyze the estimation error of the
complementary gradient verses the ordinary gradient, using
the bias-variance decomposition technique. Bias-variance
decomposition is a common approach in statistical learning
used to evaluate the complexity of a learning algorithm;
instead of analyzing the error of a prediction problem, we
extend this framework to evaluate the estimation error of the
gradient, setting the ordinary gradient as the target. We will
show that URE has much larger L5 loss than SCL caused
by its large variance, despite having no bias.

We denote f as the gradient step determined by ordinary
labeled data (x, y) and ordinary loss ¢. ¢ denotes the com-
plementary gradient step by complementary labeled data
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Figure 4. Error decomposition of gradient estimators.

(x,7) and complementary loss £ (or ¢). h denotes the ex-
pected gradient step of [K] \ {y}, which is the average of ¢
on every possible CL. We formalize as:

f=Vly,g(z)) (15)
c=VI(y,g(z) (16)
h = (17

i > v 9(0)

In this setting, we set f as the ground truth, which is the
target for the complementary estimator c. We hope the mean
squared error(MSE) of gradient estimation to be small.

MSE =E, , 5 [(f — ¢)?] (18)

Here we can derive the bias-variance decomposition by

introducing h and eliminating remaining terms:
E[(f —¢)?] =E[(f —h+h—¢c)’]
=E[(f —h)’] +E[(h — ¢)’]

Bias?

(19)
(20)

Variance

Since the UGE has no bias, it implies that all the estimation
error of UGE comes from the variance term.

We run experiments to check how the complementary gra-
dient c approximate the ordinary gradient f, and compare
with baseline methods. The training works as follows. In
each epoch, we compute three gradients: the ordinary gradi-
ent f, the current method ¢, and h. We measure the mean
square error (MSE), the squared bias term and the variance
term according to Equation 18 and Equation 20. In each
epoch, we only update the model with f to maintain a fair
comparison of the gradients. The optimizer is SGD with a
learning rate fixed at 10~2, trained for 300 epochs.

Results are showed in Figure 4 (mean statistics are shown
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in Table 2 and Table 3), GA is omitted for visualization
reasons. It is clear that although URE has no bias, it has
very large MSE due to the large variance. On the other hand,
the SCL methods though have little bias, have much smaller
variance compared to URE. This justifies our claims in Sec-
tion 4.1, the URE creates highly diverged gradients in order
to maintain the overall unbiasedness, resulting high gradient
variance. On the other hand, SCL introduces inductive bias
towards minimizing the CL likelihood, trading zero bias
with reduced variance.

5. Conclusion

In this paper, we show that unbiased risk estimator (URE)
does not serve as a desirable optimization objective in
weakly supervised learning problems such as learning with
complementary labels. From the empirical risk aspect, the
URE encounters the negative risk issue which leads to severe
overfitting under weakly supervision. From the gradient as-
pect, the effort to maintain the unbiased gradient estimator
(UGE) causes misleading direction and large variance to the
loss gradient. We propose a new SCL learning framework
based on the minimum likelihood principle and surrogate
complementary loss functions. Though having a bias to-
wards the CL, the SCL framework avoids the extremely
noisy gradient problem encountered in URE. Empirical re-
sults show that SCL outperforms URE in classification ac-
curacy and other gradient quality metrics.

Table 2. Gradient error decomposition of MNIST on linear model
(Averaged over 300 epochs)

METHOD MSE BIAS? VARIANCE
URE 1.9692E-03  8.0643E-07 1.3907E-02
NN 1.7268E-03  3.7248E-03  1.2272E-02
GA 1.0436E+00 2.5829E+00 8.3596E+00
SCL-FWD  7.7511E-06  7.5037E-06  6.9942E-07
SCL-NL 7.7511E-06  7.5038E-06  6.9931E-07
SCL-EXP 7.9152E-06  7.7895E-06  4.3945E-07

Table 3. Gradient error decomposition of CIFAR-10 on DenseNet
(Averaged over 300 epochs)

METHOD MSE BIAS? VARIANCE
URE 5.0196E-02  6.6855E-06 1.0101E-01
NN 5.2152E-02  2.1846E-02  7.0500E-02
GA 3.1350E+01 1.2985E+01 3.8302E+01
SCL-FWD  2.0237E-04 1.9225E-04 1.1051E-05
SCL-NL 2.0237E-04 1.9225E-04 1.1050E-05
SCL-EXP 2.0455E-04 1.9810E-04 7.0735E-06
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A. Proofs
A.1. Proof of Proposition 1
Proof. Let 17 and 17 denote the conditional distribution P(Y | X) and P(Y | X) respectively, where n(z) = P(Y = k | )

and 7, (z) = P(Y = k | z). Since ¢ only depends on y, we have 1j(z) = T'" n(x). The unbiased risk estimator can be
derived as follows:

R(g:0) = E(u yppll(y, 9(x))] = EXEy~n<X>[e<xg<x>>1
— Ex[n(X) 6(g(X))] = Ex[A(X)(T"")e(g (X))
=B, ;) pleg (T7)(g())]

O
A.2. Proof of Proposition 2
Proof. Given the following two properties of {y;:
ZZOl(i,g(x)) =K-1 and
lo1(7,9(x)) + o1 (7, 9(x)) = 1
An unbiased risk estimator of classification error can be obtained by:
R(g; lo) = E(z,y)wp[ (K —1)lo1(y,9(x)) + 2501 5,9 }
~ B pep| (6~ D1~ (7 g(a:)))ﬂ
= (K 1By a5 9()] = (K ~ ) Rlgi o)
O

A.3. Proof of Proposition 3

Proof. The proposition can be derived by using the linearity of the gradient operator:

Egy [Vol(y,9(x))] = VoEg, [((7, 9(x))]

K
V| O [ (K - it 9(e) + 3 g
Y'Y j=1
K
= Vo] = X gl + Y- 90| = Vot g(e)
y'#y j=1



