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Traditionally, uniform interpolation based approach is adopted to enhance the image 

resolution from a single image. Due to the one and only one image, the quality of the re-
constructed image is thus constrained. Multiple frames as additional information are util-
ized to do super-resolution for higher-resolution image. If we have enough low-resolution 
images with observed sub-pixels, the high-resolution image can be reconstructed. To deal 
with general cases, we adopted non-uniform interpolation by iterative back-projection to 
estimate the high resolution image. Motion compensation is used to accurately back-pro- 
ject the kernel and make the process converge efficiently. Motion masks are produced for 
useful images/regions selection and sub-pixel blocks matching are used to do motion esti-
mation. Objects are assumed to move slightly between two consecutive images. Thus, er-
roneous motion vectors could be corrected by the center of motion vector clusters. From 
experimental results, the PSNRs of proposed method were higher than the others, ranging 
from 0.5 to 1.6 dB. The difference values of the high frequency parts were also greater from 
0.63% to 4.86%. It demonstrated the feasibility of the proposed method. 
 
Keywords: super-resolution, image enlargement, motion compensation, iterative back pro-
jection, k-means clustering 
 
 

1. INTRODUCTION 
 

A video camera has limited spatial resolution which depends on the number of 
charge-coupled device (CCD) sensors. Due to the higher cost with hardware technology, 
software approach is usually adopted to reconstruct high resolution image. Super-reso- 
lution is the process of generating a raster image with a higher resolution than its source. 
The source consists of one or more images. Van Ouwerkerk [1] gave a survey on super- 
resolution in which single-frame super-resolution is also known as image scaling, interpo-
lation, zooming, or enlargement. 
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The classical way of obtaining super-resolution image is by using kernels such as 3 × 
3 or 5 × 5 windows. These are the basic techniques in image enlargement and they involve 
calculation of data values from the known pixels such as the nearest-neighbor interpolation, 
bilinear interpolation, and bi-cubic interpolation. Performing this re-sampling by using 
kernels is easy and effective, but not optimal in terms of quality. Specific algorithms such 
as smart interpolation by anisotropic diffusion (SIAD) [2], new edge-directed interpolation 
(NEDI) [3], and locally-adaptive zooming algorithm (LAZA) [4] have been designed for 
scaling up images that deliver higher quality results. However, these methods have a con-
straint on the number of available pixels in a single image. 

For the reason of additional information, multiple images are considered to resolve 
such problems. The basic idea is illustrated as in Fig. 1. Multiple frames based approach 
[5] is to reconstruct a single high-resolution image from a sequence of low resolution im-
ages, and is also referred to as super-resolution (SR). It works only if the frames are 
shifted by fractions of a pixel from each other. The super-resolution algorithm is to ag-
gregate those registered sub-pixels contained in the smaller original frames to produce a 
larger image. However, some restrictions itemized as followings are made with regard to 
different applications. 

 
Fig. 1. Basic idea of super-resolution. 

 
• Movement: If the objects in image are completely still or only move a little, the su-

per-resolution image could not be well reconstructed for the lack of exposed sub-pixels. 
Images expansion for objects doing slow motion and translational motion are suggested 
in the literature [6, 7]. 

• Sampling rate: On the other hand, the captured images may be blurred and not useful to 
super-resolution when the objects move too fast. Therefore, the temporal sampling rate 
could not be too slow. 

• Illumination: If the original images were captured with much noise, overexposure, or 
underexposure, we could not reconstruct the good high-resolution images for the er-
ror-prone image registration. 

 
High-resolution images are useful and important in many applications such as medical 

imaging, astronomical imaging, and video surveillance. In recent years, videos from cheap 
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low quality cameras increase more and more, and the demand of higher resolution from 
these low resolution images attracted a lot of attentions. An initial version of this paper 
appeared in [8]. Here, we formulate the back projection function [9] as a linear translation 
within a short time period and the convergence time is greatly reduced. In the following 
section, we will briefly review the multiple frames approaches used to do super resolution 
from the viewpoint of learning or not. In section 3, we propose our method which adopted 
motion compensation in iterative back projection to deal with diversity of real world situa-
tions. In section 4, we design experiments to cover scenes with multiple moving objects 
and moving camera. Both visual and numerical verification of the results are given. Finally, 
discussions and conclusions are made in the last section. 

2. RELATED WORKS 

2.1 Learning Based Non-uniform Interpolation Approaches 
 

Since there are multiple frames available, learning could be used both supervised to 
train interpolators and unsupervised to perform clustering. Neural network image scaling 
using spatial errors (NNSE) [10] has to be trained by “showing” example images. The 
consistency among neighboring nodes can be checked by the estimated or guessed higher 
resolution patches. However, learning makes the process more complicated and they could 
be applied only in the learned domain. 

The main idea of network model based approach is to use some high-resolution im-
ages as references for the aim of learning how to sharpen an image. These references are 
high-resolution images, containing low-, mid-, and high-frequency information as training 
set. In general, the image is scaled up (with a factor of 2) by interpolating the missing pix-
els with bi-cubic method firstly. Then it results a larger image, but the high frequency in-
formation is missing. To estimate the missing high-frequency, the training set provides the 
various approximate patches to compensate the zoomed image. 

There are several different models to learn the neighborhood relationships in those 
network model based algorithms. Shen et al. [11] introduced the Bayesian maximum a 
posteriori probability (MAP) method for image enlargement. The reconstruction of the 
super-resolution image is placed into a statistical framework by using the MAP estimation. 
Since super-resolution is an ill-posed problem, this method incurring a priori constraints 
to transform the problem into a well-posed problem. Another variant is to use Markov 
network [12] to model the relationships between high- and low-resolution patches, and 
between neighboring high-resolution patches. It is applied in an iterative algorithm, which 
usually converges in finite turns. 
 
2.2 Motion Based Non-uniform Interpolation Approaches 
 

Motion based systems for enhancing image resolution of video is mainly composed of 
three components [5]. The first and the most important step is image registration or motion 
estimation which takes a set of low-resolution frames as input and produces motion in-
formation from one to another frame. The second is the super-resolution algorithm which 
combines low-resolution frames and motion information to reconstruct a high resolution 
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image. Finally, image restoration is applied to the up-sampled image to remove blurring 
and noises. The differences among existing works are subject to what observation model is 
adopted, in which particular domain (spatial or frequency) the algorithm is applied, what 
type of reconstruction method is employed, and so on. The three stages corresponding to 
the three components are stated as below: 
 
1. Motion estimation: i.e., registration (if the motion information is not known). 
2. Non-uniform interpolation: adopted to produce an improved resolution image. 
3. De-blurring process: dependent on the observation model. 
 

With the image registration information, the HR image on non-uniformly spaced 
sampling points could then be obtained. The direct or iterative reconstruction procedure is 
followed to produce uniformly spaced sampling points [13]. Vandewalle et al. [14] pro-
posed a frequency domain technique to precisely register a set of aliased images, based on 
their aliasing-free low-frequency part. A high resolution image is reconstructed using bi- 
cubic interpolation. It is the initial guessed SR image which greatly influenced the qual-
ity of reconstructed images. Wang et al. [15] proposed a scheme to enhance this step. 
The outlier registration with the high definition pixel precision is obtained by comparing 
warped high definition frames with the reconstructed SR image, and the adverse influence 
can be eliminated in calculating low definition difference to accelerate the convergence 
rate of the SR reconstruction and improve the quality of reconstructed images. Rochefort 
et al. [16] proposed an affine motion observation model. This model is based on a decom-
position of affine transforms into successive shear transforms. They demonstrated the ob-
servation model leads to better results in the case of variable scale motions. 

Irani and Peleg [9] formulated the non-uniform interpolation of SR as an iterative 
back-projection (IBP) process. The high-resolution image reconstruction is accomplished 
by iteratively minimizing the difference between the given low-resolution images and the 
simulated low-resolution images generated from down-sampling the current guessed high- 
resolution image. The advantage of IBP is that it is intuitively and easily understood. 
However, it has no unique solution due to the ill-posed nature of the inverse problem, and 
it has some difficulty in choosing the back-projection kernel. 

Chen et al. [17] employed improved initial guess by bi-cubic interpolation, robust 
image registration, automatic image selection, and image enhancement to do super resolu-
tion. When the target of reconstruction is a moving object with respect to a stationary cam-
era, high-resolution images can still be reconstructed. However, corresponding pairs of the 
moving object must be chosen carefully and manually. In addition, image registration is 
critical in the performance since it re-defines each pixel on the high-resolution image per 
iteration using the information of the corresponding pixel on the low-resolution images. 

In this paper, we utilize sum of absolute difference (SAD) and normalized cross-cor- 
relation (NCC) as the matching criterion to do motion estimation. Objects are assumed to 
move slightly between two consecutive images. Thus, erroneous motion vectors could be 
corrected by the center of motion vector clusters. By motion vector clustering, general ap-
plications with multiple moving objects could be processed easier. Motion compensation 
is then used to accurately model the back-projection kernel and make the process converge 
efficiently. The details are described in the following sections. 
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3. SYSTEM ARCHITECTURE 

To save the learning for model based approaches, overcome the intervening of human 
operations in [17], and increase the accuracy of super resolution, we proposed the motion 
compensated iterative back projection method. Fig. 2 shows the system architecture which 
is mainly composed of the proposed motion vector estimation and clustering, and the 
modified back projection based reconstruction of high-resolution image. In the following, 
we will discuss how these functional blocks work. Before processing, we have to remove 
noise because super-resolution will also enhance noise. Median filter or Wiener filter are 
usually adopted to smooth out noises. As to useful image selection, images with little mo-
tion are duplicate and discarded. 

Preprocessing and useful 
images selection 

Sub-pixel block matching 
by integrating SAD/NCC

High resolution image 
reconstruction

Back projection of 
high resolution images

Projected result 
satisfied?

Post-processing 

yes 

Initial guess 

no

Motion vectors clustering 
and correction 

Useful regions selection 

Low resolution
images 

High resolution
image 

 
Fig. 2. Flowchart of the proposed system. 

 
The frame used to do super resolution is called the reference frame. Firstly, bi-cubic 

interpolation is adopted to give the initial guess. Each successive frame of the same scene 
is processed with the super-resolution algorithm until a scene change is detected. The ini-
tial guess will affect the performance of the system. If we have good initial guess, the proc-
ess of super-resolution will converge faster. On the contrary, the result of super-resolution 
will not converge or be worse. 

3.1 Motion Estimation by Integrating SAD and NCC 

Usually, some images are duplicate or even without motions when they were taken. 
Those images will not improve the quality of reference image but incur the burden of sys-
tem. For this reason, we can remove them by measuring the quantity of movement. The dif-
ference between the current image and the reference image, and the difference between the 
current image and the previous image are computed. Then, the two difference images are 
intersected to produce moving regions. Non-moving regions and the boundary parts are 
excluded to reduce the execution time. 
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Motion estimation plays a very important role in super-resolution. According to the 
magnification factor m, we need to match current image with reference image to 2-m scale 
of sub-pixel precision. Each matched image represents a different sub-pixel moving dis-
tance. These matched images of the different sub-pixel movements are then used to do 
super resolution. In this paper, images are segmented into 8 × 8 blocks and motion estima-
tion is conducted by block matching. 

The matching criterions are the sum of absolute difference (SAD) and normalized 
cross-correlation (NCC). The SAD, between a block in the current frame fk and that block 
after it displaced by a motion vector d = (u, v) in the reference frame fl, is formulated as in 
Eq. (1). 

,
( , ) | ( , ) ( , )|,k l

x y B
SAD u v f x y f x u y v

∈
= − + +∑                              (1) 

where f(x, y) denotes the pixel value at (x, y) within the matching block B. The estimated 
motion vector is then given as d = (u, v) | minSAD(u, v) for all possible (u, v) within the 
search window. 

The other criterion normalized cross-correlation (NCC) complement with SAD could 
resist changing brightness better. The correlation between two signals is a standard ap-
proach for feature detection. The NCC stresses the features of image and is formulated as 
in Eq. (2). 
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( , )kf x y  and ( , )lf x u y v+ +  are the means of the current block B and the corresponding 
block B′ in the reference image, and NCC(u, v) is the correlation coefficient between block 
B and B′. The estimated motion vector d is given as d = (u, v) | maxNCC(u, v). In our sys-
tem, blocks matched if wsSAD(u, v) + wnNCC(u, v) exceeds a given threshold, where ws 
and wn are the weights. 

In real world applications, some mismatched motion vectors still exist. Thus, motion 
vectors correction must be done to ensure the quality of super resolution. The motion vec-
tors could be clustered by k-means algorithm [18] for the extraction of k individually 
moving objects. The algorithm is of non-supervised learning and k is automatically deter-
mined. By assuming rigid moving objects undergoing translational motion between suc-
cessive frames, each cluster corresponds to a moving object. Within each cluster, the mo-
tion vectors should be consistent and the erroneous motion vectors within a cluster could 
therefore be corrected. Continuous motion could be assumed in a sequence of frames if 
video is captured at the speed of 24-30 frames per second. 
 
3.2 Motion Compensated Back Projection Method 
 

We can use the motion vectors between reference image and the low-resolution im-
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age to do super-resolution. By comparing the real low-resolution images with the simu-
lated low-resolution image that is back projected from the reconstructed super-resolution 
image in the nth iteration, the differences are used to improve the (n + 1)th iteration of 
super-resolution image. Repeatedly apply this process as shown in Fig. 3 until the error ε 
converges to a satisfactory result. 

 
Fig. 3. Iterative back-projection (IBP) by motion compensation. 

 
The imaging process of gk at nth iteration is simulated by Eq. (3), where gk is the kth 

observed image; f is the super-resolution image; h is the blurring operator, something like 
a Gaussian blurring kernel, defined by point-spread-function (PSF) δ of the sensor of the 
digital camera; Tk is some transformation operator that may happen to the high-resolution 
image; and ↓s is the down-sampling operator. The iterative scheme of the super-resolution 
is updated by Eq. (4). 

( ) ( )( ( )* ) ,n n
kkg T f h s= ↓                                              (3) 
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where K is the total number of low-resolution images that are used; p is the de-blurring 
operator; ↑s is the up-sampling operator; and f (n) is the reconstructed result after nth itera-
tion. The IBP scheme to estimate the HR image is then expressed by 
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where gk
n (= f (n)h) is the simulated LR image from the approximation of f after n iteration, 

γk
(n1,n2) denotes the set {(m1, m2) ∈ gk | (n1, n2) ∈ f is influenced by (m1, m2)} as shown in 

Fig. 4 (a), p[m1, m2; n1, n2] is a back-projection kernel that determines the contribution of 
the error to f (n)(n1, n2) properly, and h is a blurring operator determined by the PSF of the  
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 (a)                             (b) 

Fig. 4. (a) The back projection kernel p; (b) The forward projection kernel h. 

 
sensor projects from f (n) to gk

n as shown in Fig. 4 (b). In other words, γk
(n1,n2) represents 

the points that are within the block centered at (n1, n2) than the other points in f (n). 
In this paper, p[m1, m2; n1, n2] are the weights between (m1, m2) and (n1, n2), and Eq. 

(5) can be reformulated as Eq. (6). 

4
( 1) ( ) ( )

1 2 1 2 1 2 1 2
1 1

( , ) ( , ) 1/ | ( , ) | 1/4 ( , ) ,
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n n n
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f n n f n n K g m m f l lϕ φ+

= =
= + −∑ ∑        (6) 

where (m1, m2) + mvk ∈ block of (n1, n2), (l1, l2) − mvk′ ∈ block of (m1, m2), ϕk and φi are 
usually set to inverse proportional to distance, and gk

n is the simulated LR image approxi-
mated from f (n) as shown in Fig. 4 (b). Note that mvk′ is the motion vector in the recon-
structed HR image and is given in Eq. (7). 

1 2
1 2 1 2

1 2
( , ) ( , )k k

n n
mv m m mv m m

m m
′ = × ×                                   (7) 

The IBP super resolution algorithm is then given as follows, 
 
Algorithm: IBP super resolution. 
Input: Initial guess of HR image f. A set of LR images gk, k = 1~K, along with their mo-
tion masks and mvk to f. 
Output: Reconstructed HR image f. 
Step 1:  Back project each non-stationary point (m1, m2) in LR image by f (n+1)′(n1, n2) = 1/  

1 2
1
| ( , ) |

K

k k
k

K g m m ϕ
=
∑  to reconstruct the HR image, where ϕk is the normalized in-  

verse of the Euclidean distance between 2(m1, m2) + mvk′(m1, m2) and (n1, n2), and 
the displaced (m1, m2) is within the kernel of (n1, n2). 

Step 2:  Project the non-stationary point (l1, l2) in HR image by gk
n = 

4
( )

1 2
1

1/4 ( , )n
i

i
f l l φ

=
∑  

to simulate the LR image, where φi is the normalized inverse of the Euclidean dis-
tance between the simulated point (m1, m2) and (l1, l2), and (l1, l2) − mvk′(m1, m2) 
is within the kernel of (m1, m2). To simplify the computation, gk

n = f (n)(l1, l2)h was 
used to calculate gk

np which results f (n)h * p. 
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Step 3:  Repeat steps 1 and 2 if 

1 2

( 1) ( )
1 2 1 2( ( , ) ( , ))n n

n n
f n n f n nε ′+= −∑∑  is greater than a 

given threshold. 
 

In this algorithm, h and p, functional multiplicative inverse each other, play very im-
portant roles for convergence. Since the coefficients ϕ and ψ in h and p are both set to be 
normalized inverse of distance, h * p would produce the original image theoretically. It 
was pointed out in [11] that the choice of p affects the characteristics of the solution. 
Therefore, p is utilized as an additional constraint which represents the desired property of 
the solution. Irani and Peleg [12] formulated the error minimization by translation, affine, 
and moving planar surface motion models. However, their algorithm could only detect and 
track one dominant object at a time. In this paper, the minimization is restricted to be trans-
lational motion and h * p could be treated as a kind of PSF δ. By the remark in [12], ||δ − 
h * p|| would be less than one when the 2-D image motions of the tracked object consist of 
only translations and rotations. Therefore, our algorithm would converge at an exponential 
rate as proved by Theorem 3.2 in [12]. Still, we could deal with multiple moving objects 
concurrently. 

After super-resolution process, the reconstructed high-resolution image may have 
noises. In order to make it clearer and more recognizable, post-processing is recommended. 
In this paper, adaptive histogram equalization is used to refine the high-resolution image. 

4. EXPERIMENTAL RESULTS AND DISCUSSIONS 

Experimental results of the proposed system were demonstrated to show its feasibil-
ity in real world applications. The experimental environments were described as follows, 
 
• Personal computer (PC): Intel Pentium 4 3.0 GHz CPU and 1024 MB DDR RAM. 
• Capture device: digital video camera with resolution ranging from 100 × 100 ~ 300 × 

300. 
• Processing: programs were written in MATLAB and the magnification factor is basically 

2 × 2 (4 × 4 and 8 × 8 are optional). The number of images used to do super resolution 
within a second is 30 frames. 

 
4.1 Super Resolution of Multiple Moving Objects 
 

We recorded several minutes of the real world scene with two moving cars in the 
same direction on road. A blue sedan is in front and a bigger van behind is occluded in 
the lower parts. The magnification factor is 2 by 2 and the result is shown in Fig. 5. Simi-
larly, Fig. 5 (b) looks vague due to limited information. Though the car license plate in Fig. 
5 (c) looks clear, Chen et al.’s result still not so good at edges. Especially, there were lots 
of noises in the upper left parts which belong to the rear window of the big van. It is worse 
that human may not be able to recognize the van. However, by using motion vectors clus-
tering, the reflections from window together with the complex background would not be 
over amplified to produce noises by our algorithm as shown in Fig. 5 (d).  

Another example is given in Fig. 6 to demonstrate the system capability to recover 
the high frequency regions as indicated in the upper rectangles. Most of the characters  
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(a) Low resolution image.                 (b) Bi-cubic interpolation method. 

 

    
(c) Chen et al.’s method.                 (d) Proposed super-resolution method. 

Fig. 5. Results from different approaches to the SR image of real world LR images with multiple 
moving objects.  

 

           
(a) The HR images by bi-cubic method.      (b) The super resolution image generated by 

proposed method. 
Fig. 6. Another example demonstrated the feasibility of proposed method. Two boxes move in op-

posite directions.  

 
enlarged by bi-cubic could not be recognized. On the contrary, most characters are rec-
ognizable as shown in the super resolution image by our method. 
 
4.2 Super Resolution of Camera Motion 
 

We panned the camera to record a scene with a red van parked by road side as shown 
in Fig. 7. The image sequence was down-sampled for the demonstration of proposed mo-
tion compensated super-resolution. Then we could compare the resulting super resolution 
image with the original high resolution image. High pass filter was used to get the finer 
detail parts of the original image, Chen et al.’s HR image, and our motion compensated 
HR image as shown in Figs. 7 (a), (b), and (d), respectively. By visual inspection, we 
could find that there were more details recovered in Fig. 7 (d). 

The peak signal to noise ratio (PSNR) based on mean squared error (MSE) was used 
to measure image quality. The MSE was simply the mean of the squared differences for  
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(a) The high frequency parts of the original 

high-resolution image. 
(b) The high frequency parts generated by the 

Chen et al.’ method. 

             
(c) The super resolution image generated by 

the proposed method. 
    (d) The high frequency parts of (c). 

Fig. 7. Ground truth comparisons of the high frequency regions between Chen et al.’s and our 
method.  

 
every pixel. Let f(i, j) denote the value of pixel of the original image, F(i, j) the value of 
pixel of the compared image, r the number of rows and c the number of columns, the MSE 
can be obtained by using Eq. (8). The PSNR can be obtained from the MSE and the 
maximum signal value by using Eq. (10). The PSNR is expressed in decibels (dB) and a 
higher value corresponds to a lower error and thus a higher quality.  

[ ]2
1 1

1 ( , ) ( , ) ,
r c

i j
MSE f i j F i j

r c = =
= −

× ∑∑                                   (8) 

,RMSE MSE=                                                    (9) 

10
25520 log ( ).PSNR

RMSE
=                                            (10) 

Table 1 summarizes both the PSNRs and the differences among high frequency parts 
of the super resolution image produced by different techniques. The PSNR of proposed  
 

Table 1. The PSNR and difference in percent of the high frequency parts. 
Technique PSNR Difference 

The zero-order interpolation 16.8937 22.77% 
The bilinear interpolation 17.4835 19.54% 
The bi-cubic interpolation 17.8292 19.09% 

Chen et al.’s method 18.0232 18.54% 
The proposed method 18.5311 17.91% 
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method was higher than the others, ranging from 0.5 to 1.6 dB. The differences of the high 
frequency parts were also greater than the others from 0.63% to 4.86%. From experimen-
tal results, the quality of the resulting image was improved by the proposed method. 
Theoretically, the quality of reconstructed SR image would be better if more LR images 
are used as shown in Eq. (5). 
 
4.3 Super Resolution of Scale 4 × 4/8 × 8 
 

In the previous experiments, the super resolution scale was 2 × 2. Here, a previous 
video sequence was used to do super resolution of scale 4 × 4 (from 2 × 2) and 8 × 8 
(from 4 × 4) as shown in Fig. 8. Different scaling factor images by the same super resolu-
tion algorithm were listed in the same row for visual inspection. Figs. 8 (a)-(c) show the 
LR van image were enlarged to 240 × 192 − 960 × 768. We could find that there were jig-
saw phenomena in the left 960 × 768 (8 × 8) image by bi-cubic for the insufficient infor-
mation within only an image. As to the right images reconstructed by the proposed method, 
they were sharpener than bi-cubic’s. The reason was that the high frequency parts were 
kept and used to generate finer detail for the next scaling factor. 

 

      

 

 
                 (a) 2 × 2.                        (b) 4 × 4. 

 

 
(c) 8 × 8. 

Fig. 8. Another example for different scaling factors 2 × 2, 4 × 4, and 8 × 8. The left was by bi-cubic 
and the right was by the proposed method. 

 
Though super resolution could enlarge image, the higher scaling factor, the higher 

possibility that vague phenomenon occurred. It is due to lesser sub-pixels from the lower 
resolution images. These halo artifacts around the strong edges could be reduced by in-
troducing more LR images. Theoretically, we need 4, 16, and 64 sub-pixels for the 2 × 2, 
4 × 4, and 8 × 8 sub-pixel shifts for the reconstruction of super resolution images. 
 
4.4 Execution Time with Image/Region Selection 
 

The cost of computation largely depends on the motion estimation which in turn de-
pends on the dimensions of the observed low resolution images. Table 2 shows the execu-
tion time for the four typical experiments without selection and with selection of useful  
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Table 2. Execution time of the proposed method with and w/o selection. 
Example Size Without Selection With Selection 

Book 120 × 120 270s 254s 
Green Car (Fig. 5) 141 × 96 263s 181s 

Boxes (Fig. 6) 216 × 144 790s 503s 
Red Car (Fig. 7) 140 × 96 250s 148s 

 
images from the 30 LR images. Frames with little motion were discarded. Furthermore, 
we use motion masks or moving regions to speed up the motion estimation and the exe-
cution time was reduced when these selections are done. Still, the time spent depends on 
the quality of captured video and the size of moving regions. In the experiments, all the 
moving objects occupied large regions and moved in most of the frames. Therefore, the 
time saved was not so apparent. The processing speed can also be improved by using effi-
cient programming language like C with sophisticated software/hardware motion estima-
tion methods. 

In practice, we are interested in some specific regions like license plates and the 
characters, thus we can choose interesting regions to do super resolution instead of the 
whole image. The processing time would be further reduced. The average execution time 
for region of size under 6,000 pixels is within one minute in our experiments. 

5. CONCLUSIONS 

To deal with general applications, we proposed a feasible and faster motion compen-
sated iterative back projection based super-resolution algorithm. Firstly, the initial high- 
resolution image is guessed by the bi-cubic interpolation. Secondly, the current image is 
segmented into blocks for doing accurate sub-pixel motion estimation. By integrating both 
SAD and NCC features which are complemented in nature, the block matching is quite 
good in the dimensions of brightness and color. In addition, the non-moving regions 
(background) are ignored by motion masks to reduce block matching time. Then, k-means 
motion vector clustering is used to segment different moving objects and filter out the er-
roneous ones. 

The high-resolution images are reconstructed by adding the sub-pixel motion vectors 
to the low resolution images. By projecting the HR image back to LR image for compari-
son with other real LR images, we could measure the error or quality of resulting HR im-
age. The back projection kernel weights are set linearly proportional to the motion vector. 
Repeatedly apply this process until the reference frame converged to a satisfactory result 
or all useful low resolution images are consumed. Note that the reference frame is de- 
noised and frames with little motion are considered as duplicated. Finally, image equaliza-
tion is adopted to improve the quality of the image. 

In the experiments, multiple moving objects and moving cameras as shown in Fig. 5 
to Fig. 7 were tested. The PSNR of the proposed method was higher than the others, rang-
ing from 0.5 to 1.6 dB. From the viewpoint of high frequency parts, our method could re-
cover more detail parts. The amount of recovered high frequency parts were also higher 
than the other methods ranging from 0.63% to 4.86%. The proposed method is better than 
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the traditional ones and could deal with image sequence of multiple moving objects and 
moving camera. As to the executing time, it consumes lots of computations to improve 
the whole scene. In real applications, interesting moving regions can be selected to do 
super resolution to save time. For regions with size under 6,000 pixels, we could produce 
results less than a minute. As to future works, objects undergoing unrestricted quick mo-
tion are too complex and unpredictable. Motion vectors clustering needs to be refined to 
take the factor of rotation and deformation into consideration. Accordingly, the back pro-
jection function could also be modified. 
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