
VIDEO STABILIZATION FOR A HAND-HELD CAMERA BASED ON 3D MOTION MODEL
J. M. Wang1, H. P. Chou3, S. W. Chen2, and C. S. Fuh1

1 Computer Science and Information Engineering, National Taiwan University, Taiwan
2 Computer Science and Information Engineering, National Taiwan Normal University, Taiwan

3Information Management, Chung-Hua University, Taiwan

ABSTRACT
In this paper, a video stabilization technique is presented.
There are four steps in the proposed approach. We begin with
extracting feature points from the input image using the
Lowe SIFT (Scale Invariant Feature Transform) point
detection technique. This set of feature points is then
matched against the set of feature points detected in the
previous image using the Wyk et al. RKHS (Reproducing
Kernel Hilbert Space) graph matching technique. We can
calculate the camera motion between the two images with the
aid of a 3D motion model. Expected and unexpected
components are separated using a motion taxonomy method.
Finally, a full-frame technique to fill up blank image areas is
applied to the transformed image.

Index Terms—SIFT detection, RKHS graph matching,
3D motion, Motion taxonomy, Full-frame process.

1. INTRODUCTION
Vision systems play important roles in many intelligent
applications, such as transportation systems, security systems,
and monitoring systems. Cameras may be installed on
building or held by a people. Hand held cameras often suffer
from image instability [1]. In this paper, a video stabilization
technique for a video camera held by a person is presented.
This technique can be considered as a solution for the general
video instability problems.

There are typically three major stages constituting a video
stabilization process, motion estimation, motion taxonomy,
and image compensation. Motion estimation is an ill-
conditioned problem because of camcorder motion, which is
three-dimensional (3-D), is estimated on the basis of input
images that are two-dimensional (2-D). This stage actually
dominates the entire stabilization process in both accurancy
and time complexity. Many techniques, both hardware and
software, have been proposed for improving the performance
of motion estimation.

Since 3-D motion estimation from 2-D images is ill-
conditioned, additional information needs be included in
order to make the problem well-conditioned. Several motion
models, which serve as an important source of a priori
information, have been introduced, including a 2-D rigid
model with four parameters [2], a 2-D affine model with six
parameters [3], a 2.5-D model with seven parameters [4], and
a 3-D model with nine parameters. Intuitively, the higher the
dimension of the model is used, the better the accuracy is
achieved. However, this may not be always the case because
high dimensional models involve more complicated
computations, which themselves may incur numerical
instability.

There are two important tasks when using motion models:
interframe motion calculation and model fitting. The

interframe motions between successive images are calculated
and then fitted to the preselected motion model, from which
an overdetermined system of equations of motion parameters
is obtained. By finding an optimal solution to this system,
motion parameters are determined.

The techniques for calculating interframe motions can be
classified into two categories, differential and matching (or
correlation) approaches. The differential approaches,
primarily for computing optical flow [5] and based on the
assumption of image brightness constancy, are known to be
sensitive to both high-order derivative errors and the aperture
problem. Matching techniques can be divided into two
classes, block matching [6] and feature-based matching [7].
Block matching is intrinsically weak at handling motions
involving rotation and scale change. On the other hand,
feature-based matching can cope with motions involving
translation, rotation, and scaling. However, the effectiveness
of the feature-based method depends heavily on the features
employed.

The rest of this paper is organized as follows. In Section 2,
we address the problem under consideration and give the
solution process. The critical techniques for implementing
the process are given in Sections 3-5. These include global
feature extraction and matching in Section 3, camcorder
motion estimation in Section 4, image compensation in
Section 5. Experimental results are presented in Section 6.
Finally, Section 7 presents our conclusions and gives
suggestions for future work.

2. SYSTEM WORK FLOW
Our stabilization method consists of four steps (Fig. 1):

feature point matching, camera motion estimation, motion
taxonomy, and image compensation. To extract feature
points, we apply SIFT (Scale Invariant Feature Transform)
proposed by Lowe [8] to detect the feature points in an image.
These feature points will be invariant to changes in scale,
rotation, and illumination, and so are suitable for our
application. A graph matching method modified from the
method proposed in [9] and discussed in Section 3 is applied
here for matching feature points between two successive
images.

Fig. 1. Image stabilization flowchart.

3477978-1-4244-5654-3/09/$26.00 ©2009 IEEE ICIP 2009

Given a motion model, the 3-D motion of the camera can
be calculated from the 2-D image. However, among these
motions, some are unexpected because of camera motion,
while some are expected because of object motion. In motion
taxonomy, we can ignore the expected motions to calculate
the camera motion. Camera motions are then smoothed in
time and applied to transform each image to obtain a
stabilized video sequence. Some missing parts of one image
will be compensated at the same time to have a full-frame
sequence.

3. FEATURE-POINT EXTRACTION
Feature points in one image are first detected by the SIFT
method [8]. They are represented as a full connected graph G
= (V, E), where V is the set of the nodes denoting the feature
points, and E is the set of the edges showing the relations
between points. Using the graphs for two successive images,
the corresponding points in each image can be found by
using a graph matching method. From the corresponding
feature points in successive images, the geometric
relationship between the images can be estimated.

To represent the feature points in an image I, we
construct matrices Ak, k = 1,2,..,m, where m is the number of
kinds of features. The elements of Ak are the feature values
calculated according to the k-th kind of feature for all feature
points. Unary feature points are represented by a diagonal
matrix, and binary features values by a symmetric matrix
whose (i, j)-th element is the value for the relationship
between the i-th and j-th feature points.

Feature points in the following image I’ in the sequence
can also be represented by matrices . The correspondence
between the feature points in successive images can be
obtained by solving the following equation for the
permutation matrix P:

kA

)(min
1

m

k

T
kkP
PAPAP ,

where P can be found by the method based on RKHS
proposed in [9], and . is some norm and it is Frobenius
norm in our application.

RKHS graph matching, however, can be applied to Ak
whose elements have been normalized. Here we modify this
method by applying a new measurement function to adapt to
the various types of feature values. Matrix P is found in two
steps, weight matrix construction and optimal assignment.
Each element W(i, j) of the weight matrix is computed by:

W (i, j)
max

s
min

t
ak (i,s) a k (j, t)

k 1

m

max
s

min
t

ak (s,i) a k (t, j)

max[ak (i,.),a k (j,.),ak (.,i),a k (., j)]
,

where ak(.) and are the element in Aa k (.) k and A k ,
respectively. The calculated value gives the degree of the
correspondence between node i and node j.

The graph with fewer nodes is padded with null nodes to
give an equal number of nodes in each graph. In the matrices,
feature values of the null nodes and their corresponding
edges are set to null value, and are ignored in constructing

the weight matrix. After constructing the weight matrix, we
assign the optimal value for each element of P. Hopfield
neural network is a well known assigning method. In this
application, we use Hungarian algorithm [11] because of its
polynomial processing time.

In our work, the unary feature values are location (x, y),
color values, magnitude m and orientation :
m(x, y) (L(x 1, y) L(x 1, y))2 (L(x,y 1) (L(x,y 1))2 ,

(x, y) tan 1((L(x, y 1) L(x, y 1) /(L(x 1, y) L(x 1, y)),
where L is the corresponding scale image after convoluting
with the Gaussian filter. The binary feature value is the
Euclidean distance between the feature points in the same
image. After these computations, each node will match a
node in the other graph. Redundant nodes will match either a
null node or another redundant node in the other graph.

4. GEOMETRIC CAMERA CALIBRATION
In the camera model shown in Fig. 2, O is the optical

center of the lens; i, j, k are three orthogonal unit vectors and
k points in the viewing direction. The image plane is located
at z = f, where f is the focal length. In the image plane, the
perspective projection point p of a scene point P = (x, y, z)T

(iOPx , jOPy , kOPz) can be defined as the
intersection of OP and the image plane. If (u, v, f)T is the

coordinate vector of p, u and v can be calculated by x
z
f

u

and y
z
f

v . We may say (u, v) are the image coordinates of

p. This process is known as geometric camera calibration.

Fig. 2. Camera model.

Consider another camera model in the same space, where
its optical center is located at Ot. We can define another
coordinate frame F’ by the origin Ot and another three
orthogonal unit vectors i’, j’, and k’, where k’ points in the
viewing direction of this camera. The point P can be
represented using a new coordinate vector P’ in F’ by a
rotation and translation given by:

OPP R (1)
where R is a rotation matrix, and O’ is the coordinate vector
of origin O in F’.

There is a projection point p’ of P in the image plane,
which is denoted by (u’, v’); it can be calculated by the same
function G mentioned above. When we obtain an image
sequence from a moving camera, a scene point may change
position from image to image. We want to estimate R and O’
in two successive images given corresponding points pi and
pi’, i=1,…,n, where n is the number of point pairs.

3478

The matrix R is a combination of the rotation matrices R ,
R , and R about the i, j, and k axes of the coordinate frame F,
respectively

,
where , , and , are the rotating angles and

.

Since the translation and rotation of the camera should be
very small in a small time interval, we can assume that the
rotating angles are very small. Under this assumption, R

RRRR

cossin0
sincos0
001

R
cos0sin

010
sin0cos

R
100
0cossin
0sincos

R

, R ,
and R can be simplified as

and Eq. (1) can be written as
. (2)

10
10

001
*R

10
010

01
*R

100
01
01

*R

OPP *** RRR

Expending Eq. (2) under gives

(3)

where (x’, y’, z’)

T),,(zyxO

zzyxyxz
yzyxyxy

xzyxx

T is the coordinate vector of P’. Then we can

calculate the image coordinate (u’, v’) of p’ by x
z
f

u and

y
z
f

v . If x and y in Eq. (3) are very small relative

to y, we will have

)()(

)()(

y
z
f

z
z
f

x
z
f

y
z
f

f
z

z
f

zzxy
z
f

v

x
z
f

z
z
f

y
z
f

x
z
f

f
z

z
f

xzyx
z
f

u
.

Replacing f , f , and
f
z

z
f

with three constants, m, n, and

1
, and eliminating small values,

f
z

x and
f
z

y , these

functions can be rearranged as:

vnuv

umvu

nuvv

mvuu

)(1

)(1

. (4)

Given some corresponding point pairs (ui, vi) and (ui’, vi’),
i=1,…,n, we can solve for , m, and n by the least squares
method. Let the solution be x = (, , m, n)T. This solution is
not the actual value because of the expected motions which
we will discuss later.

5. IMAGE COMPENSATION
If we calculate the transformation results (from (uui

*,vi
*) i, vi)

according to x, there will be some differences (xi, yi),
where iii uux * and iii vvy * . These differences
should be zero if all of the known points are shifted because
of the camera motion. We call such a shift “unexpected
motion”. However, there will be some “expected motions”.

The latter are mixed with the object moving and are more
complex than the previous one.

Expected motion points cause the initial x to be too
imprecise. If we assume there are many more of unexpected
motion points than the expected motion points, the initial x
can be assumed to be close to the unexpected motion points
and those unexpected motion points will have smaller (xi,

yi). To improve on the initial x, we can eliminate those
points with larger differences, which are assumed to be
expected points, and recalculate x again. In our experience,
the point with largest difference is eliminated, and we repeat
the above process until the value of x approaches that of the
previous one.

Suppose that x(t) is the vector of the camera motion from
time t-1 to time t, and s(t) is the summation from x(0) to x(t).
We may say that a video sequence has been stabilized if the
stabilized vector x’(t) does not change significantly from the
previous one x’(t-1). In other words, the summation of the
stabilized motion, s’(t), should smoothly vary. To obtain s’(t)
we convolve s(t) with a Gaussian function. The image at time
t, It, is then transformed using the compensation values, xt,t,
defined as x t ,t s (t) s(t) . We denote the transformed
image as I t , and all of the transformed images will constitute
a stable image sequence.

The boundary of the transformed image will be blank as
shown in Fig. 3(b). To fill up this image, we can extract the
lost information from the prior and following images Ik,
k (t n)...t...(t n). First, the image Ik is transformed using

x k,t s (t) s(k) to match the stabilized camera model at
time t. We denote the new image as Ik

t . When the value of
the image point at (x, y) in I t is missing, we replace this
point using the same point in Ik

t , k (t n)...t...(t n) . Fig.
3(c) shows the result.

(a) (b) (c)
Fig. 3. (a) Original image. (b) After transformation for stabilization.
(c) Filling up the boundary with the successive frame.

We convolve the Gaussian function with s(t) from time
(t-n) to (t+n), which helps to obtain s (t) and I t at time t+n.
In filling images, Ik

t with small t k is checked at first,
because we believe that images closer to time t will be more
similar to I t . Finally, the other points which still have no
values can be filled up using the interpolation and
extrapolation methods described in [10].

6. EXPERIMENTAL RESULTS
We test our algorithm on three kinds of image sequences.
First, we capture images with the camera in a static position.
Motions in the video are caused by movements of the object
and the camera. And second, we capture the images with a
moving camera. In this sequence the camera has a significant
change along the z-axis. Final sequence is captured with the
camera moved and panned at the same time.

3479

Each image frame is extracted and processed with our
algorithm to obtain a stabilized image. The processing time
for one image (435x240 pixels) is about two seconds on a 3.0
GHz Pentium IV. The images before processing are shown in
the top rows of Fig. 4 and Fig. 5, and the images after
processing are shown in the bottom rows. An X in the middle
is shown to help see the shift distance of the objects. More
experimental results are shown in our website:
http://www.csie.ntnu.edu.tw/~ipcv/Research/ulin/

In the first case (Fig. 4), there is a large area of water,
where the feature points are few and difficult to match. Our
processing result shows that the moving object is more stable
than that in the original images (top rows). In addition, some
lost information in the stabilized image will be filled up, for
example, the plane in the top of frame 1.

Frame 1 Frame 2 Frame 3
Fig. 4. Top row is original image sequence. Bottom row is image
stabilized sequence.

In the second case (Fig. 5), an image sequence is captured
with a moving camera. Objects in the scene have a
significant change in size. Our processing result shows that
the objects in the scene are stable, but there are some errors
in the boundary after filling up. We can compute the depth (z
value) to correct that, which will be our future works.

Frame 1 Frame 2 Frame 3 Frame 4
Fig. 5. Image sequence captured by a moving camera.

In the final case (Fig. 6), camera is held by a people on
the boat. The camera has a significant change along x-axis.
Our algorithm needs no motion assumption, so that it could
be applied to many kinds of video sequences.

Frame 1 Frame 2 Frame 3 Frame 4
Fig. 6. Image sequence captured with significant pan motion.

Fig. 7 shows the motion values before and after
stabilization. In this figure, lighter lines show the values
before processing, and the darker lines show the stabilized
results. In Fig. 7(a), the values (rotation angle) are shown
along the vertical axis (time), which should be close to zero

during the video acquisition. It shows that the camera motion
is more stable. Fig. 7(b) shows the value (scale) in the
second case. Since the camera is moving forward, we will
have < 1. Our processing stabilizes the value and produces
a stable image sequence.

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127 133 139 145 151 157 163

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127 134 141

(a) (b)
Fig. 7. (a) value (vertical axis) of the first sequence along time
(horizontal axis), where lighter lines and darker lines denote the
value before and after stabilization respectively. (b) value of the
second sequence.

7. CONCLUSIONS
In this paper, we propose an algorithm for stabilizing an
image sequence captured by a hand-held video camera. This
algorithm makes the following contributions: First, a 3D
camera motion model can be obtained and used to stabilize
the image sequence. It is more precise than traditional
methods using 2D models. Second, our method can be
applied to general case because it need not detect any objects
in the scene. Third, by detecting the expected and unexpected
motions, the camera motion model can be calculated more
precisely and the foreground objects can be located at the
same time.

Image stabilization helps to more conveniently extract
information from the video. However, our method can not be
applied to real-time systems because of the slowness of the
SIFT computation. Our next phase of research is to improve
the speed so that it can be performed in real time.

REFERENCES
[1] Y. M. Liang, H. R. Tyan, S. L. Chang, H. Y. Liao, and S. W. Wang,
“Video Stabilization for a Camcorder Mounted on a Moving Vehicle,” IEEE
Trans. on Vehicular Technology, vol. 53, no. 6, pp. 1636-1648, 2004.
[2] C. Morimoto and R. Chellappa, “Fast Electronic Digital Image
Stabilization for Off-Road Navigation,” Real-Time Imaging, vol. 2, no. 5, pp.
285-296, 1996.
[3] M. Betke, “Recognition, Resolution, and Complexity of Objects Subject
to Affine Transformations,” Int. Journal of Computer Vision, vol. 44, no. 1,
pp. 5–40, 2001.
[4] J. S. Jin, Z. Zhu, and G. Xu, “A Stable Vision System for Moving
Vehicles,” IEEE Trans. Intell. Transport. Syst., vol. 1, pp. 32–39, 2000.
[5] J. Y. Chang, W. F. Hu, M. H. Cheng and B. S. Chang, “Digital Image
Translational and Rotational Motion Stabilization Using Optical Flow
Technique,” IEEE Trans. on Consumer Electronics, vol. 48, no. 1, pp. 108–
115, 2002.
[6] L. Xu and X. Lin, “Digital Image Stabilization Based on Circular Block
Matching,” IEEE Trans. on Consumer Electronics, vol. 52, no. 2, pp. 566-
574, 2006
[7] Z. Duric and A. Rosenfeld, “Image Sequence Stabilization in Real
Time,” Real-Time Imaging, vol. 2, no. 5, pp. 271–284, 1996.
[8] D. Lowe, “Distinctive Image Features from Scale-Invariant Keypoints,”
Int. Journal of Computer Vision, vol. 60, no. 2, pp. 91-110, 2004.
[9] M. A. van Wyk, T. S. Durrani, and B. J. van Wyj, “A RKHS
Interpolator-Base Graph Matching Algorithm,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 24, no. 7, pp. 988-995, 2002.
[10] Y. Matsushita, E. Ofek, W. Ge, X. Tang, and H. Y. Shum, “Full-Frame
Video Stabilization with Motion Inpainting,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 28, no. 7, pp. 1150-1163, 2006.
[11] H. W. Kuhn, “The Hungarian Method for the Assignment Problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

3480

