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Abstract

Some satellites transmit a piece of information for
a set duration, then proceed with another piece of in-
formation. A ground station receiving from several
such satellites and wishing to avoid data loss faces a
real-time scheduling problem. “The pinwheel” is a
formalization of this problem. Given a multiset A of
integers = {ai, ag, ..., a5}, a successful schedule S is
an infinite sequence over {1, 2, ..., n} such that any
subsequence of aj (1 < i < n} consecutive entries
(“slots”) contains at least one i. The “pinwheel decision
problem” concerns whether a “useful” representation
of the corresponding schedule exists. We have thus
far established several facts about these problems.
First, if a schedule exists, there exists a cyclic sched-

n
ule (hence, “pinwheel”) of period no greater than '1'[1

1=
a;. Exponential length cyclic schedules are often nec-
essary; hence the scheduling problem requires time
exponential in the length of the input. The decision
problem is in PSPACE. The “density” of an instance is

n
defined as .21 1/a;. Instances with a density of over 1.0
1=
are impossible to schedule, always requiring more
slots than exist in any given cycle length. Instances
consisting solely of multiples (i.e., i <j = aj | aj) with
density < 1.0 are schedulable. (Note that this includes
instances consisting solely of powers of the same base
with density < 1.0.) Densities < 0.5 may always be
scheduled by reduction to instances consisting solely
of powers of 2. “Dense” instances are those whose
density is 1.0. Our most comprehensive results con-
cern dense instances, where we investigate sub-
classes where there exists polynomial time strategies
for the construction of “fast online schedulers” — i.e.,
programs that generate the actual scheduling se-
quence in constant time per item scheduled.

1. Introduction

The “pinwheel” problem is motivated by the per-
formance requirements of a ground station that pro-
cesses data from a number of satellites (or mobile
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sensors). Now the ground station can process data
from only one satellite at a time, no preemption of
processing is allowed, and the time necessary for pro-
cessing data from a satellite is exactly one “time unit.”
The following protocol is utilized to ensure that no
data is lost. Each satellite may commence sending
data at any time, but must repeat sending the same
data for a set interval (a specified number of “time
units”). Suppose the interval specified for satellite x is
a “time units.” Then the ground station can ensure
the processing of data from satellite x by having a time
slot assigned to service satellite x in any interval of
length a, i.e., by making sure that no two consecutive
slots assigned to servicing satellite x are more than a
“time units” apart.

The pinwheel is a formalization of this problem.
Given a multiset A of integers = {aj, ag, ..., ap}, a
successful schedule S is an infinite sequence ji, jo, ...
over (1, 2, ..., n} such that any subsequence of a; (1 < i
< n) consecutive entries (“slots”) contains at least one
i. The interpretation is that during the kth “time unit,”
the ground station is servicing satellite jkx. For
example, “1 21 2 ...” is a schedule for A = {2, 3}). Notice
that the 15t (2nd) satellite is serviced at least once
within any interval consisting of 2 or more “time
units.” The “pinwheel decision problem” concerns
whether such a schedule exists. The “pinwheel
scheduling problem” involves producing a “useful”
representation of the corresponding schedule.

The pinwheel is one of a growing family of hard-
real-time scheduling problems and is a special case of
the latency scheduling problem for sporadic processes
[Mok 83]. In the process model of real-time systems
(e.g., [Liu & Layland 73], [Leung & Merrill 80], (Mok &
Sutanthavibul 85]), each process is parameterized by
an ordered pair (¢, p) where ¢, and p are respectively
the computation time and period of the process. The
scheduling problem is to ensure that every process is
executed in every period, i.e., the process (c, p) re-
quests service at time = i*p, i 2 0, and must complete
execution by time = (i+1)*p. The satellites in the pin-
wheel problem may be modeled as processes. How-
ever, a process in this case may request service at any
time, subject to the condition that two consecutive re-
quests from the same process must be at least p time
units apart. In the real-time scheduling terminology,
the satellites in the the pinwheel problem are sporadic
processes where the deadline and minimum separa-
tion parameters are the same. Another difference is



that the pinwheel problem does not allow preemption
of processes.

Let (a1, ag, ..
problem. Clearly, without loss of generality, we may
assume that aj; < ag < ... € ap. Hence, we do so
throughout this paper. We have thus far established
several facts. First, if a schedule exists, there exists a
cyclic (hence, “pinwheel”) schedule of period no

n
greater than .I'[lai. A cyclic or pinwheel schedule for
1=
A is a sequence S, of finite length, over (1, ..., n}, such
that S® — S concatenated to itself a countable number
of times — is a schedule for A. A cyclic schedule for
A = {2, 3} is “1 2.” Exponential length cyclic schedules
are often necessary; hence the “pinwheel scheduling
problem” — if we assume an enumeration of the
cyclic schedule as output (an assumption we later re-
ject) — requires time exponential in the length of the
input. The decision problem is in PSPACE. The

n
“density” of an instance is defined as 21 1/a;. In-
1=
stances with a density of over 1.0 are impossible to
schedule, always requiring more slots than exist in
any given cycle length. Instances consisting solely of
multiples (i.e., i < j = aj | aj) with density < 1.0 are
schedulable via a simple greedy strategy. Densities <
0.5 may always be scheduled by reduction to instances
consisting solely of powers of 2. In general, our sim-
ple greedy strategy does not solve the scheduling prob-
lem.

Our most comprehensive results concern “dense”
instances — those instances whose density is 1.0. For
“nondense” instances — those instances whose den-
sity is < 1.0 — we know of no a priori way to ascertain
the exact length of a valid cyclic schedule — short of
producing it. However, cycle lengths of LCM(ay, ag,
.., an) are both necessary and sufficient for schedula-
ble dense instances. It is not clear whether LCM is
even an upper bound on the minimum sufficient
length of cyclic schedules for nondense instances. In
terms of special cases we consider dense instances A
that contain only 2 or 3 distinct integers. In the case
of 2 distinct integers, we show that A can always be
scheduled. In the case of 3 distinct integers, we illus-
trate that the “pinwheel decision problem” is in
PTIME. The best we can show for general dense in-
stances is that the decision problem is in NP. We also
show the problem to be NP-hard assuming a more
succinct representation of the input. Unfortunately,
at this time we are unable to reconcile the two proofs
into a single theorem. The reduction used in the lat-
ter proof seems novel in that it makes use of a funda-
mental theorem in number theory concerning the
distribution of primes.

Throughout this paper we are concerned with
finding “useful” representations of the schedules —
providing, of course, that they exist. What’s really
needed is not the schedule itself but a “fast online

., an) be an instance of the pinwheel-
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scheduler” (a FOLS) — a program that generates the
scheduling sequence in constant time per item gener-
ated. Such programs would be suitable to act as
drivers for the respective ground stations. From a
particular cyclic schedule one can easily build a cor-
responding FOLS as a finite state machine. Unfortu-
nately, since the cyclic schedules are, in general, of
exponential length, this seems to be an impractical or
unrealistic approach. A better approach would be to
construct polynomial time program generators
(PTPGs) that take as input an instance of the pin-
wheel problem and produce as output a corresponding
FOLS — providing one exists. In light of the negative
results mentioned earlier, we do not expect that a
PTPG exists that will produce FOLSs for all schedula-
ble instances. However, they might exist for classes of
instances where the “pinwheel decision problem” is in
PTIME. For many classes described in this paper we
show just such a result.

The remainder of the paper is organized as fol-
lows. In Section 2, we explore some facts concerning
general instances — as well as provide an operational
definition for FOLSs. In Section 3, we examine some
restricted instances where schedules always exist. In
Section 4, we discuss the results we've obtained with
respect to dense instances. Finally, in Section 5, we
give some concluding remarks.

2. Some Facts Concerning General Instances

In this section, we present a number of relatively
simple results concerning general instances of the
pinwheel problem. The utilitarian value of these re-
sults will become clear later when we prove some of
the more difficult theorems concerning restricted in-
stances. These results also suggest an agenda of
questions yet to be considered.

Let A = {ay, ..., an} be an instance of the pinwheel
problem. Our first result illustrates that if a schedule
for A exists then there exists a cyclic schedule for A
whose period is exponential in the size of A.

Theorem 2.1. If A = {ay, ..., ay} has a schedule then A
has a cyclic schedule whose period is no greater than

n
.H aj.
i=1

n
Proof. Letm = '1'[1 aj. Let S =jpj1 ... be an infinite

1=

schedule for A. Consider the prefix of S, S' = jgj1 ...
jom. Each slot in S’ can be represented by a vector <cy,
..s tn> Where ¢j, 1 < j < n, denotes the number slots
since the last occurrence of j. For the slots indexed
from m to 2m these vectors are well defined — i.e., for
each such vector each position j, 1 <£j < n, in the vector
contains a value between 0 and aj— 1. Now there are
n

I1 aj such unique vectors. Hence, there exist indices
i=1

s and t, m < 8 < t £ 2m such that slots 8 and t are rep-



resented by the same vector. It is now easy to see that
“jg ... jt—1” i8 a cyclic schedule for A whose length is no

n
greater than [] ai. a
i=1

Exponential size schedules are, in general, nec-
essary. Consider the instance A = {2, 4, 8, 16, .., 2n-1
2n 2n). Note that A is dense. It will be shown in the
next section that A is schedulable — and in the last
section that any cyclic schedule for A must have a pe-

riod of at least 2",

The next corollary follows directly from the proof of
Theorem 2.1.

Corollary 2.2. The “pinwheel decision problem” is in
PSPACE.

An immediate question to consider is whether the
“pinwheel decision problem” is PSPACE-complete or
whether it is somewhat easier. Although the pin-
wheel schedules themselves are, in general,
exponential in length, this does not preclude the exis-
tence, say, of a PTPG that:

(1) decides whether a given instance is schedula-
ble, and

(2) if so outputs a FOLS representation of a
respective valid pinwheel schedule.

Recall that the FOLS is a program that will generate
the scheduling sequence in constant time per item
generated — and hence suitable to act as a driver for
the ground station. For example, it might take the
form of a program P:
P: o;
Do

forever

where « is an initialization code segment and B is a
“simple” segment of straight-line code that can be
made to run in precisely a “time unit.” (We assume
here that B may contain instructions within the
repertoire of most assembly languages including
those available on some vector machines.) Each itera-
tion of P would cause the servicing of a single satellite;
and the sequence of satellites serviced would be the
schedule. Unfortunately, the algorithm in question
probably does not exist — at least with respect to gen-
eral instances. In the last section of this paper, we il-
lustrate that the “pinwheel decision problem” is NP-
hard with respect to dense instances — assuming a
particular concise input representation. Hence, the
existence of the proposed algorithm would make it
likely that P = NP. There are, however, a number of
instance classes for which PTPGs do exist. Examples
of these are shown throughout the paper.

The existence of PTPGs that will produce FOLSs
for a class of scheduling problems in fact defines a
complexity class. We term this class “S-P-C” for
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Scheduling-Polynomial-Constant and define it for-
mally as follows:

Definition. A scheduling problem is in S-P-C if and
only if there exists a program that runs in polynomial
time that determines whether a schedule exists, and
if so generates a scheduler that runs in constant time
per item scheduled.

Note that related scheduling classes may be de-
fined as well, such as S-NP-C, S-PSPACE-NL, and S-
P-NC. We consider S-P-C to be of greatest importance
to the pinwheel problem, but the remaining classes
may prove useful in approaching other scheduling
problems and may lead to interesting theoretical
problems.

Before concluding this section, we state an easy re-
sult concerning the density of an instance.

Theorem 2.3. Any instance whose density is greater
than one cannot be scheduled.

Theorem 2.3 follows simply from observing that for A
= {ay, ..., ag) each i, 1 < i < n, must be scheduled at
least 1/a; of the time. Clearly, this cannot be done for

n
everyiif ¥ laj>1.
i=1
3. Some Restricted Instance Classes
In this section, we illustrate two restricted in-

stance classes for which simple schedules always ex-
ist. Specifically, we consider the following classes:

Cym =f{A | A= (aj, .., an) wherei <j=> a; | aj and
n
Y 1/a;<1)
i=1
n
Cs5=(A | A= {ay, ..., an} where ¥ 1/a; £ .5)

i=1

€y are those instances consisting solely of multiples
with density < 1.0. €5 are those instances whose den-
sity is no greater than 0.5. In each case we show that
a simple “greedy” scheduling strategy can be used to
schedule all instances in €M and € 5.

We begin by proposing the following SimpleGreedy
algorithm.

SimpleGreedy (A = {aj, ..., an})
*/ Recall that a; Sag<..<anp*

n
m:= [] aj;
i=1
Set up a sequence of empty slots indexed 0
through 2m - 1;
For i:=1tondo

j := smallest index of an empty slot;



While slot; is not empty do
j=31;
ifj <0 then
output(“cannot schedule”);
halt endif
endwhile
put i into slot j;
j=]+aj
Untilj 2 2m
endfor
Assign to each slot j a vector ¢j = <¢j1, ..., Cjn>
where c¢j;, 1 <! < n, denotes the number of
slots since the last occurrence of /.
Locate indices sand t, m < s <t < 2m — 1, that
have been assigned identical vectors.
Delete all empty slots.
Output the contents of slotg through slott_3.
End

It is fairly easy to see that SimpleGreedy cannot be
used to schedule all instances that are schedulable —
even in the dense case. Consider, for example A = {2,
8, 8, 12, 12, 12). SimpleGreedy can, however, always be
used to find a pinwheel schedule for instances in Cym
and € 5.

Theorem 3.1. If A = (a3, ..., ap) is in €y, then Sim-
pleGreedy will find a cyclic schedule for it.

Proof. Suppose A = {aj, ..., an} is in €. The essential
observation to be made for instances in Cy is that the
body of the While loop never gets executed. Hence, the
occurrences of a given integer i, 1 <i < n, end up ex-
actly aj slots apart.

Let ji, 1 <i < n, be the index of the first slot that
SimpleGreedy assigns toi. We can conclude the theo-
rem if we can establish fori = 1, ..., n that:

(1) 0<jj<aj—1,and

(2) there do not exist integers k, [, and ¢, 1<k <<
i, ¢ 2 0, such that (j; + ca;) modulo ax = jx —
thus insuring that the body of the While loop
will not be executed during the first i iterations
of the For loop.

The proof proceeds by showing (1) and (2) to be the
invariant of the For loop. The proof is an induction.
Clearly, ji = 0, and thus all slots whose indices are
equal to 0 modulo a; contain 1. Both (1) and (2) are
true when i = 1. Suppose then that (1) and (2) are true
for 1, ...,i. Consider now the i + 18t iteration of the For
00p.

We first show that ji41,i + 1 < n, can be chosen
consistent with (1). Suppose for a contradiction that it
cannot — i.e., slots indexed O through aj;1 — 1 are all
nonempty. Since a; | aj,1, slots indexed O through a;
— 1 are also nonempty. Since 1 < k < i implies that ak
| aj we can see that if slot s contains k that slot s + a;
also contains k. Hence, all slots are nonempty. Fur-
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thermore, slots 0 through m-1 form a schedule for
(a1, ..., aj} where exactly m/ax of the slots contain k, 1

i
<k<i. Hence, m = ¥ m/ag

i
m Y l/ax. We then
k=1

i
get that k}:lllak = 1 — a contradiction. We now have
that (1) holds.

Given j;+1 suppose now that (2) fails. Again we de-
rive a contradiction. Since (2) held for i, we conclude
that I = i+1. Since jj4+1 (> jx) was empty we have that
ji+1 modulo ax #jk. But since ak | aj41, ji+1 + cais1
modulo ak = ji+1 modulo ax. An obvious contradiction
results. Hence (2) holds. Q

Theorem 3.1 would be considerably strengthened if
it could be shown to hold for €y = (A | A = (a3, ..., an)

n

where 1 <i= aj | ajand 3 1/a; < 1} Unfortunately,
1=

not all members of Cy are schedulable. A = {2, 4, 6,

12} is an example thereof. (See Section 4 for strategies

of proving such facts.) Furthermore, SimpleGreedy

fails to schedule some schedulable members of €' —

like A = (2, 8, 8, 12, 12, 12} mentioned earlier.

Instances in €5 can always be scheduled by
reduction to instances consisting solely of powers of 2.

Corollary 3.2. If A = (aj, ..., ap} is in € 5, then Sim-
pleGreedy can be used to find a pinwheel schedule for
it.

Proof. Suppqse A= [al_, <oy @p) isin €5 LetB = (b,
vy bn}, b = 20 where 2J < a; < 2*1. Note that any

n
schedule for B is also a schedule for A. Now ¥ 1/a; <

I=
n
.5 implies that ¥ 1/bj < 1.0. Hence, B is in Cy and
i=1

thus schedulable. Q

4. Results Concerning Dense Instances

In this section, we prove a number of results con-
cerning dense instances. We first illustrate a useful
constraint on the cycle lengths of potential dense
schedules. We then consider dense instances A = (aj,
..., an} where A contains only 2 or 3 distinct integers.
In the case of 2 distinct integers, we show that A can
always be scheduled. In the case of 3 distinct inte-
gers, we illustrate a polynomial time algorithm to de-
cide the pinwheel decision problem. PTPGs — as de-
scribed in Section 2 — are given in both cases. Such
algorithms might be useful since it seems likely that
many satellites could be clones of one another and
hence have identical periods. We then show that the
pinwheel decision problem for general dense in-
stances is in NP. For a concise input representation,



we show the problem to be NP-hard. The reduction
used in the NP-hardness proof seems novel in that it
makes use of a fundamental theorem of number the-
ory concerning the distribution of primes.

In general, we know that if A = {aj, ..., ap} is
schedulable, that it can be scheduled via a pinwheel

n
schedule of length < [T aj;. We know of no a priori
i=1

way to ascertain the exact length of a valid cyclic
schedule — short of producing it. This is not the case
for dense instances. In fact, for schedulable dense in-
stances, cycle lengths of LCM(a;, ..., an) are both nec-
essary and sufficient.

Lemma 4.1. Let A = {aj, ..., ap} be a dense instance.
Let S be a cyclic schedule for A of length m. Then
each i must occur exactly m/a; times in S. Further-
more, successive occurrences of i in S must be exactly
aj slots apart. Lastly, m must be a multiple of
LCM(ay, ..., ap).

Proof. dlearly each a; must occur at least rm/ai-]
times in S. Because each i must occur at least [m/aj

n
times in S we get m — the length of S —tobe 2 ¥
i=1

n

‘):1 m/aj. Hence, we get a
1=

contradiction if for any i, [m/aj] > m/a;. Thus each i
must occur exactly m/a; times in S. As a result, we
see that m/a; must be integral for every i and hence
LCM(ay, ..., an) must divide m. a

n
[m/ajl. Butm =m .21 1/aj =
1=

Theorem 4.2. If A = (ay, ..., ap) is dense and schedu-
lable then A has a cyclic schedule whose length is
LCM(ay, ..., an). Furthermore, shorter schedules for
A are not possible.

Proof. Let S be a cyclic schedule for A of length m.
From Lemma 4.1 it follows that m = r LCM(ay, ..., an).
Hence, shorter schedules for A are not possible. Now
divide S into r identical segments, each of size

LCM(ay, ..., ap). Consider an arbitrary slot k in the
first segment. Suppose this slot contains i. Since the
kth slot of the jth segment is the k + a; (j LCM(ay, ...,
ap)ap)th slot of S, it follows from Lemma 4.1 that this
slot also contains i. Hence, S consists of r identical
segments, each of which by itself constitutes a valid
schedule for A. Q

For dense instances A = {ay, ..., ap} we know a pri-
ori certain properties about their schedules. Hence,
we have some tools for showing that such schedules
do not exist. For example, consider the instance A =
{4, 4, 4, 6, 12). Since LCM(4, 6, 12) = 12, A will have a
schedule iff it has a cyclic schedule of length 12. Con-
sider then a cyclic schedule for A of length 12 — slots
0 through 11. Since all the periods are even, the in-
dices of all slots assigned the same integer must be
equal modulo 2. There are a total of 6 even numbered
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slots and 6 odd numbered slots. Integers 1, 2, and 3
have a period of 4 and thus will each occupy 3 slots of a
given value modulo 2. Integers 4 and 5 will occupy 2
and 1 slots, respectively, of a given value modulo 2.
Hence, without loss of generality, we may assume
that integers 1 and 2 occupy the even numbered slots
and that integers 3, 4, and 5 occupy the odd numbered
slots. Scheduling 1 and 2 in the even numbered slots
is easy — but scheduling 3, 4, and 5 in the odd num-
bered slots is equivalent to finding a schedule for A =
{2, 3, 6}. Such a schedule cannot exist since GCD(2, 3)
= 1. This fact is formally proven in the next theorem.

Theorem 4.3. Let A = {aj, ..., ap) be dense and
schedulable. Then for every ij, 1 <1i, j <n, GCD(aj, aj)
>1.

Proof. For a contradiction suppose that A is schedu-
lable and that for some i and j GCD(aj, aj) = 1. Let S be
a schedule for A. By Lemma 4.1 each occurrence of i
() in S is a; (a;) slots from the previous occurrence.
Hence if slot k; (k;) is the first slot allocated to i (j) then
the slots allocated to i (j) are precisely those indexed k;
+ ¢ aj (kj + ¢ aj) for all ¢ 20 — i.e, all slots whose in-
dices are equivalent to ki modulo a; (kj modulo aj).
But since GCD(aj, aj) = 1 there exist slots whose in-
dices are simultaneously equivalent to both k; modulo
aj and kj modulo aj. In order to see this, note that
finding nonnegative integers ¢, ¢’ for ki + caj = kj + ¢'
aj is equivalent to solving the linear diophantine
equation ¢ a; — ¢' aj = kj — ki. This equation has non-
negative integer solutions whenever GCD(aj, a;) di-
vides kj — k; [Stewart 64]. Hence GCD(aj, a;) > 1. a

Now let us turn our attention to the scheduling of
dense instances A = {aj, ..., ap} where there is a lot of
repetition among the entries. Clearly, if A is com-
posed of n identical integers, A can be scheduled. One
simply constructs the pinwheel “1 2 3 ... n,” since each
aj = n. If A is dense and composed of exactly 2 distinct
integers, then it too can be scheduled. The proof of
this fact is a bit more involved. Our exposition re-
quires the following technical lemma.

Lemma 4.4. Suppose x; and x3 are positive integers.
Then there exist positive integer solutions to a/x1 +
b/xg = 1 iff d = GCD(xy, x2) > 1. Furthermore, if x; =
dy: and xg = dy2 then every solution to a/x; + b/xg = 1is
such that both a/y; and b/yg are integral.

Proof. Let x3 and x2 be positive integers. Let d =
GCD(x1, x2), y1 = x1/d, and yg2 = xo/d. Rewrite the
equation a/xj + b/xg = 1 as axg + bx1 = x1x2 — a linear
diophantine equation in 2 unknowns a, b. From
number theory — see e.g. [Stewart 64] — we know
that all integer solutions in a, b to axa + bx; = x1x2 are
of the form a = A + ty1, b = B — ty2 where t is an arbi-
trary integer and A, B is a particular solution. One
particular solution is A = 0, B = dy2. Thus all positive
integer solutions have the form a = ty;, b = dyz — tyo. It
is now easy to see that a/y; and b/y2 are integral —
and that there are no positive solutions ifd = 1. Q



Lemma 4.4 gives rise to a very natural scheduling
strategy for all dense instances that are composed of
exactly 2 distinct numbers. The algorithm Dense-
Scheduler2 will find a pinwheel schedule for all such
instances. DenseScheduler2 runs in exponential time
as it enumerates the pinwheel schedule. We include
it because it is easy to understand. Later we illustrate
how the same ideas can be used to construct a “fast”
implementation satisfying the constraints laid out in
Section 2. An understanding of DenseScheduler2 will
be helpful at that time.

DenseScheduler2 introduces a concept that we will
use several times in the remainder of the paper: the
subschedule. Assume that we have a valid cyclic
schedule S, of length I, for instance A. Further as-
sume that d divides I. One can then project S into d
smaller cyclic schedules (“subschedules”) Sy, ..., Sg-1
each of length I/d by considering the slots in S modulo
d —ie, S;, 0 <i<d, comprises the sequence of inte-
gers from S whose slot indices are equal to i modulo d.
For example, the schedule S = “12131214” has two sub-
schedules modulo 2 — Sp = 1111” and S; = “2324". In
what follows we’ll refer to Sg, ..., Sq-1 as the
subschedules for S modulo d.

DenseScheduler2 (A = {aj, ..., ap), where A is
dense and composed of 2 distinct integers x; and
x2)
LetXyj={ilaj=x1},Xo={i] aj=x9),a=
1X11,b = [Xal, d = GCD(x1, x2), y1 = x1/d
and yg2 = xo/d. Note that a/y; and b/yg are
both integers, that LCM(x], x2) = dy1 y2,
and that a/y1 + blyg = d.

(1) Construct d pinwheels — aly; (b/yg) allo-
cated to indices from X; (X2) — of length y;
y2 as follows:

On each pinwheel allocated to indices from
X1 (X2) schedule exactly y1 (y2) of the indices
— each occurrence of the same index being
exactly yj (y2) slots apart.
(2) Expand each of the d pinwheels to size dy;
y2 by inserting d — 1 empty slots between
each filled slot.
(8) Construct a single pinwheel of length dy; y2
by rotating and superimposing the d pin-
wheels on each other so that each slot con-
tains exactly one index.

Output the resulting pinwheel
End

Theorem 4.5. If A = (a, ..., ap) is dense and composed
of 2 distinct integers, then DenseScheduler2 will find
a cyclic schedule for it.!

1We have just recently discovered how to prove a similar result
for nondense instances as well. It will appear in a later version
of this paper.
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The fact that DenseScheduler2 works follows al-
most directly from Lemma 4.4. The key is to note that
(1) is doable (and completely fills all d pinwheels) be-
cause a/yy and b/yg are integral. Figure 1 illustrates
the algorithm’s intermediate as well as final result on
the input A = (4, 4, 6, 6, 6).

Suppose now that A = {aj, ..., ap) is dense and
composed of 3 distinct integers — xj, xg, and x3. The
situation is much more involved than it was for 2 dis-
tinct integers — but still tractable. For 2 distinct inte-
gers — x; and x2 — the strategy revolved around
scheduling the indices corresponding to periods of x1
and xg2 on GCD(x3, x2) different wheels. Lemma 4.3
illustrated that dense instances possess exactly the
needed properties — one of which was that GCD(x;,
x2) > 1 — for such a strategy to work. A natural ques-
tion to ask in the case of 3 distinct numbers is whether
GCD(x1, x2, x3) > 1 is a necessary and sufficient
condition for a schedule to exist. The condition is not
sufficient — the instance A = (4, 4, 4, 6, 12} discussed
earlier attests to this. The next lemma, however, does
establish the necessity of the condition.

Result of (1):

D> G
& -
Result of (2):

SIS S
h‘e X, h‘ﬂ X,

e s

Result of (3):

Figure 1. An illustration of how DenseScheduler2
behaves on input A = {4, 4, 6, 6, 6}. Note
here that x; =4,%,=6,X, ={1,2}, X, = {3,
4,5,a=2,b=3,d=2,y;=2,andy, =3.




Lemma 4.6. Let A = {a;, ..., an) be dense and com-
posed of 3 distinct integers xj, xg, and x3. If GCD(x3,
xg2, X3) = 1 then A cannot be scheduled.

Proof. Suppose for a contradiction that A is dense,
schedulable, composed of a x3s, b xgs, and ¢ x3s, and
GCD(x1, x2, x3) = 1. Let ¢jj, i #j, 1 £i,j < 3, be
GCD(xi,xj). Then:

X] =C12C13 1,
X2 = C12 €23 ¥2, and
X3 = €13 €23 ¥3,

for some yj, y2, and y3. Note that:

Vijkl i#korj#l= GCD(jj ck) = 1,
Vij i#j = GCD(yi, yj) = 1, and
Vijk i#jandi#k = GCD(y;, cjx) = 1.

Hence, LCM(x1, x2, X3) = €12 €13 €23 Y1 y2 ¥3 is the
length of the shortest cyclic schedule S for A — Theo-
rem 4.2.

Let us consider the subschedules for S modulo c;9
— S, ..., Sc12-1 — of length c13 c23 y1 y2 y3. Since c12
| x; and ¢12 | x2 each index whose period is x; or xg
occupies a single subschedule — spaced ¢13 y1 or ca3 y2
slots apart, respectively. Since c¢13 y1 and cg3 y2 are
relatively prime, no subschedule contains two indices
whose periods are x; and xg, respectively.

Consider any index whose period is x3. Suppose
that it first occupies slot j in S. Then it occupies all
slots indexed j + k ¢c13¢c23y3, for0<k<cigyi1ye-1. y1
y2 slots are occupied by this index on each of Sy, ...,
Scyo-1. Since there are ¢ indices whose period is x3 we

have that ¢ y1 y2 slots on each of S, ..., S¢15-1 are oc-
cupied by indices whose period is x3.

The key to the remainder of the proof is that the
same number of slots remain for indices — whose pe-
riods are X1 or xo — on each subschedule Sg, ..., S¢qo-1.
Now recall that indices whose periods are x; or xg are
placed on a single subschedule and that no sub-
schedule contains two indices, one with period x1, the
other with period x2. Thus the number of subsched-
ules containing indices, whose period is x1 (x2), must
divide a (b).

The number of subschedules is ¢12. These must be
allocated in the ratio of a/x; to b/xg; that is, if the
number of subschedules containing x1s is wi and the
number of subschedules containing x2s is wg, w1 = c12
(a/xy) / (b/xg) = axg c19/bx] = axg/b ¢13 y1, and wg = bxi/a
c23 y2. Now wi must divide a and wg must divide b.
axg/beyg y1 divides a iff beyg y1/x2 is an integer. Since
x2 and c;3 are relative prime, x2 must divide by;. But
X2 = €12 c23 y2, and y; is relative prime to cg3 y2.
Therefore, c23 y2 divides b; and hence cg3 divides b.
Similarly, from wg divides b we get that c13 divides a.
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By symmetry using the subschedules for S modulo
c13 and cg3 we get that cg3 divides ¢, c1g divides a, ¢13
divides ¢, and c12 divides b. Hence, a = ar ¢12 ¢13, b = by
€12 €23, and ¢ = ¢y ¢13 c23. Now a/x] + b/xg + ¢/x3 = 1 be-
comes:

arcigc13  breigess  creigeas 1 or

Y1c€12€13 = y2¢€12€23  y3ci3ce3

ar br cr

LiEZix 1
y1 Y2 ¥3 @

If ay/y1 + by/yg + ¢/ys = 1 has no solutions in ar, by,
and ¢y over the natural numbers, we will have a con-
tradiction. Multiplying through by y; y2 y3, we get a,
¥2¥3+bryiys +cry1y2=y1y2ys. From number the-
ory — see e.g. [Stewart 64] — we see that the diophan-
tine equation ujvy + ugva + ugvg = w has integral solu-
tions in vy, vg, and v3 iff w = ugvz modulo GCD(uj,ug).
Substituting ar (by, ¢, Y2 ¥3,¥1Y3, ¥1 Y2, ¥1 Y2 ¥3, Te-
spectively) for vy (vg, v3, uj, ug, us, w, respectively), we
get that y1 y2 y3 =y1 y2 ¢r modulo y3. Buty1 y2y3=0
modulo y3, hence y; y2 ¢y = 0 modulo y3. Since y; and
y2 are relatively prime to y3, we have that ¢, is a mul-
tiple of y3. Let ¢y = ty3. Substituting into (1), we get

ar b ty3_

L. . ar br
fhind St =1
R 1 which is equivalent to—+ —+t=1,

yr y2

which has no solutions for natural ar, by, t. Q

Let A = {ay, ..., an} be dense and composed of 3 dis-
tinct integers — xj, xg, and x3. If A is schedulable
then A is schedulable via a pinwheel schedule S of
length d y;1 y2 y3, where d = GCD(x1, x2,x3) > 1, y1 =
xi/d, y2 = x9/d, and y3 = x3/d. One can then project S
into d cyclic subschedules Sy, ..., Sq-1 each of length y1
y2 y3. One can easily see that each occurrence of a
given integer in S must occur in the same subsched-
ule S;. Ifin S the integers are x; slots apart, on S; they
will be y; slots apart. Notice also that, by Lemma 4.6, 3
integers possessing periods xj, x2, and x3, respec-
tively, cannot all end up in the same subschedule.
Hence, the problem of scheduling A can be solved by
partitioning {aj/d, ..., an/d) into d dense instances, Ay,
..., Ad-1 (each A; containing at most 2 distinct inte-
gers), finding schedules Sy, ..., Sq.1 for each, and then
folding them together to obtain S. The next lemma
follows from the preceding discussion.

Lemma 4.7. Let A = {aj, ..., an} be dense and com-
posed of 3 distinct integers x3, x2, and x3. Suppose a
(b, ¢, respectively) entries in A are equal to x; (x2, X3,
respectively), GCD(x1, x2, x3) = d, y1 = x1/d, y2 = xo/d,
and y3 = x3g/d. Then A is schedulable iff the multiset
containing a yis, b ygs, and ¢ y3s can be partitioned
into d multisets such that each multiset is dense and
composed of at most 2 distinct integers.



An algorithm that will schedule all schedulable
dense instances with 3 distinct integers is Dense-
Scheduler3. DenseScheduler3 also runs in exponen-
tial time as it too enumerates the pinwheel schedule.
However, the ideas within can be utilized to construct
“fast” implementations as was the case with

DenseScheduler3 (A = {ay, ..., an}, where A is
dense and composed of 3 distinct integers — x;, xg,
and x3.)

LetXyj=(i lai=x1),Xo=(i | aj=x9},Xg=(i | a5=
x3},a= 1X;1,b = 1Xal, ¢ = 1X3l, and d = GCD(x3,
X2, X3).

(1) Partition {aj/Ad, ..., a,/d} into dense in-
stances Ag, ..., A4.1 each containing at most
2 distinct integers — maintaining of course
the original indices.

Construct — using DenseScheduler?2 if nec-
essary — pinwheel schedules of length
LCM(xy, x2, x3¥d for each of Ay, ..., A4.1.

@)

(3) Expand each of the d pinwheels, con-
structed in (2), by inserting d—1 empty slots
between each of the filled slots.

(4) Construct a single pinwheel of length
LCM(x1, x2, x3) by rotating and superim-
posing the d pinwheels on each other so that
each slot contains exactly one integer.

Output the resulting pinwheel.

The intent reader will find the following example
instructive when trying to understand the behavior of
DenseScheduler3. Figure 2 illustrates the algo-
rithm’s intermediate as well as final result on the in-
put A= (8,12, 12,12, 12, 12, 12, 12, 24, 24, 24, 24, 24, 24,
24).

Theorem 4.8. If A = (ay, ..., &y} is dense and composed
of 3 distinct integers, then DenseScheduler3 will find
a cyclic schedule for it if one exists.

The fact that DenseScheduler3 works follows from
Theorem 4.5, Lemma 4.7, and the surrounding dis-
cussion. Notice that the decision of whether a sched-
ule exists is determined in step (1) of DenseScheduler3
— as prescribed by Lemma 4.7. Although Dense-
Scheduler3 runs in exponential time (because it pro-
duces an exponential length schedule), we can show
that the decision step — step (1) — can be imple-
mented in polynomial time. Hence, we obtain:

Theorem 4.9. Let Cq,1,2 3 denote the class of dense in-
stances that are composed of no more than 3 distinct
integers. Then the “pinwheel decision problem” for
€4,1,2,3 is in PTIME.
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Proof. For instances with 1 or 2 distinct integers the
algorithm is easy — it simply answers “yes.” The
proof for instances with 3 distinct integers is more in-
volved and relies on the characterization given in
Lemma 4.7.

Result of (1):
Ag = {3, 6, 6, 6, 6} corresponding to indices 2, 9, 10,
11, 12, Aq = {2, 6, 6, 6} corresponding to indices 1, 13,
14, 15, A9 = {3, 3, 3} corresponding to indices 3, 5, 7,
and Ag = {3, 3, 3} corresponding to indices 4, 6, 8.

Result of (2):
G A G, 41
ool e )e:
Result of (3):

Figure 2. An illustration of how DenseScheduler3
behaves on input A = {8, 12, 12, 12, 12, 12,
12, 12, 24, 24, 24, 24, 24, 24, 24). Note
here that x; = 8, x, = 12, xg=24,a=1b

=7,¢=7,d =4, and LCM(, 12, 24) = 24.




Let A = {aj, ..., a5} be dense and composed of a x3s,
b x98, and ¢ x3s5. Let GCD(x1, xg2,x3)=d, y1 =x1/d, y2 =
x2/d, and y3 = x3/d. Then a multiset containing a y;s,
b y2s, and ¢ y3s can be partitioned into d multisets
each of which is dense and composed of at most 2 dis-
tinct integers iff the following system of equations has
integer solutions in aj, ag, a3, b1, bg, bs, ¢i1, c2, c3, d1,
dg, d, d4, ds, dg.

1) ayy1+bilyz=di1 GfGCD 1, y2)> 1)
(2) bofyg+cifyg=de GfGCD (y2,y3)> 1)
(3) agfy1+cofyza=ds GfGCD (y1,y3)>1)
4) agly1=4d4

(5) balya=ds

(6) c3lyg=dg

(7) ayj+ag+ag=a

(8) bi+bg+bg=b

(9 cr+cg+c3=c

(10) di +dg+dg+ds+ds+dg=d
(11) 8;20,b;20,¢20,1<i<3
(12) d4;20,1<1<6

(18) d;<1,1<i<3

Theorem 4.7 states that each subschedule modulo d
may contain no more than two of y1, y2, and y3. There
are, therefore, six possible kinds of subschedules:
those containing elements whose periods are y; and
¥2, y2 and y3, y1 and y3, only yj, only yg, and only ya.
These correspond to equations (1) — (6), respectively.
The total number of subschedules is d, as specified in
(10). The total number of occurrences of yi, y2, and y3
must be a, b, and ¢, respectively, as specified in (7) —
(9). (11) — (13) provide the bounds for variables. A solu-
tion to (1) — (12) for which (13) does not hold exists only
if there is also a solution in which (13) holds. This
limits the number of each variety of “mixed subsched-
ules” to 1, which will be useful later.

Furthermore, a solution to this system of equations
corresponds directly to a desirable multiset partition.
Also note that the above system of equations can easily
be rewritten as an instance of integer linear pro-
gramming — in 15 variables. Hence, solutions can be
found in deterministic polynomial time [Lenstra 83].0

A perhaps useful observation that comes from a
careful examination of the proofs of Theorems 4.5, 4.8,
and 4.9 concerns the existence of PTPGs — as de-
scribed in Section 2. For example, let A = {ay, ..., an)
be dense and composed of exactly a x1s and b x3s.
(Assume that aj, ..., ag (8a+1, ..., 3a+b) are equal to x3
(x2).) Let d = GCD(x3, x2), X1 = dy1, and x2 = dy2. Then

with a bit of work one can see that the following pro-
gram P constitutes a FOLS representation of a pin-
wheel schedule for A:

P:i:=0;
Do
(q, r) := (quotient(i/d), remainder(i/d));
/* We want to schedule the satellite corre-
sponding to the integer in slot q in sub-
schedule r. */

if0 <r < afy; then
(q', r') := (quotient(q/y1), remainder{q/y1));
service the (ryy + 141t satellite
else
r:=r-—alyi;
(q',r") := (quotient(q/y2), remainder(q/y2));
service the (a + ryz + 1 + r')st satellite;
endif
i:=1i+ 1 modulo dy1yg;
wait for the “time unit” to fully elapse
forever

Furthermore, P can be produced in polynomial time
given only a, x1, b, x2. FOLS representations of pin-
wheel schedules can also be produced in polynomial
time for dense instances composed of 3 distinct inte-
gers. The production of such implementations de-
pends heavily on a solution to the set of equations
given in Theorem 4.9.

For example, Iet A = {8, 12, 12, 12, 12, 12,12, 12, 24,
24, 24, 24, 24, 24, 24) as in Figure 2. Here is the con-
struction of a FOLS for A.

The first step is to find a solution to the equations
in Theorem 4.9. Herex; =8,x2=12,x3=24,a=1,b=
7,andc=7. d = GCD(8, 12, 24) = 4, so y1 = x1/d = 2,
y2 = xo/d = 3, and y3 = x3/d = 6. A solution is:

aj=0 ag=1 ag=0
bij=0 bg=1 bg=6
ci=4 c¢2=3 c¢3=0
di=1 d2=1 d3g=0 dsy=0 d5=2 dg=0

Only equations (2), (3), and (5) now have nonzero
terms. They describe the subschedules we will use:

(2) 113+4/6=1
(3) V2+36=1
(5) 63=2

Thus there will be 1 + 1 + 2 = 4 subschedules of three
distinct sorts. Each will consist of six slots. The in-
dices we schedule into these slots will correspond to
the indices in A : a3 = 8, ag = 12, etc., so for example,
index 1 must be scheduled every 2 slots in its sub-
schedule. The resulting subschedules are those of
Figure 2, but the result is a FOLS rather than an ac-
tual schedule. The FOLS P follows:

P:py=0;p1:=0;p2:=0; co:=9; ¢ := 13; bp := 3;
Do
if Po modulo 3 = 0
then schedule satellite 2
else schedule satellite c (;

/* 1 of the 12’s */
/* 4 of the 24’s */

Ao cp:i=q+1;
if co= 13 thenc(:= 9 endif
endif

po := (po + 1) modulo 6;
Wait for the “time unit” to fully elapse;



ifp; modulo2=0
then schedule satellite 1
else schedule satellite ¢ 1;
cri=c1+1;
ifc; = 16thenc; := 13endif
endif
p; :=(p1 + 1) modulo 6;
Wait for the “time unit” to fully elapse;
fori=1to 2do /* The remaining 6 12’s */
schedule satellite by;
bo:=by+ 1;
if by=9thenb, :=3;
Wait for the “time unit” to fully elapse
endfor

/* The 8 */
/* 3 of the 24’s */
A1

A2
&
As

forever

Note that d satellites (one from each subschedule) are
scheduled each time through the do ... forever loop.

The construction for the general case is tedious but
not difficult and hence is left to the reader.

The GCD of A, and therefore the number of sub-
schedules, is bounded by the magnitude of the num-
bers in A, which is exponential in the length of their
representation. The number of code segments is lim-
ited to six, however. The segments, corresponding to
equations (4), (5), and (6), involve for loops which allow
for multiple similar subschedules. In this way the
FOLS may be generated in polynomial time. Hence:

Theorem 4.10. €q; 23 is in S-P-C.

We would like to extend the techniques utilized
here to dense instances with k distinct integers — for
any constant k. The scheduling strategies we've em-
ployed so far seem to depend on the GCD being greater
than 1. But there are schedulable dense instances
with 4 or more distinct integers where this is not the
case. For example, A = (6, 6, 10, 10, 10, 15, 15, 30, 30,
30, 30, 30, 30, 30) is dense and can be shown to be
schedulable. However, GCD(6, 10, 15, 30) = 1.

We now turn our attention to the case of general
dense instances. Let Cq = (A | A = {ay, ..., a,) is
dense). We now show that the pinwheel decision
problem for €4 is in NP.

Theorem 4.11. The “pinwheel decision problem” for
Cqisin NP.

Proof. Let A = (ay, ..., ap} be dense. Consider the con-
struction of an infinite schedule for A. We need to se-
lect starting slots for each index that will insure the
avoidance of collisions. By Lemma 4.1, we know that
if integer i first appears in slot p; then it will occupy
slots pj + ¢ aj, for every integer ¢ 2 0. Starting slots
permissible for integer i are O, ..., aj-1. Hence, A is
schedulable iff:

3 p1, ..., Pn, 0 < Pi < aj, such that

Vij, 1 €i,j <n, -[Ja,b > 0 such that p; + a xj = pj+b xj].
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The question “Ja,b > 0 such that p; + a xj = pj + b x;?”
is an instance of integer linear programming in 2
variables and hence is solvable in deterministic poly-
nomial time [Feit 84, Kannan 80, Lenstra 83). A non-
deterministic polynomial time algorithm should now
be apparent. a

Suppose that a dense instance A composed of a;
X18, ag X28, ..., 8 Xp§ is represented using repetition
factors — i.e., as {(a1, x1), (ag, X2), ..., (an, %n)}. Notice
that Theorem 4.9, as well as the claims made in the
ensuing discussion, hold for inputs represented this
way. For such representations, we can show that the
“pinwheel decision problem,” for dense instances, is
NP-hard. We cannot, however, show this problem to
be in NP. Neither can we show the problem, as de-
scribed in Theorem 4.11, to be NP-hard.

The proof of the next theorem is long and some-
what tedious. It relies on the fact that primes (n3) —
the number of primes between 1 and n3 — is greater
than or equal to n, for n > 8 [Knuth 73]. We omit the
proof from this version of the paper but will include it
in a later version.

Theorem 4.12. The “pinwheel decision problem” for
C4, whose instances are represented using repetition
factors, is NP-hard.
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