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COMPUTING THE GIRTH OF A PLANAR GRAPH IN
LINEAR TIME∗
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Abstract. The girth of a graph is the minimum weight of all simple cycles of the graph. We study
the problem of determining the girth of an n-node unweighted undirected planar graph. The first
nontrivial algorithm for the problem, given by Djidjev, runs in O(n5/4 logn) time. Chalermsook,
Fakcharoenphol, and Nanongkai reduced the running time to O(n log2 n). Weimann and Yuster
further reduced the running time to O(n logn). In this paper, we solve the problem in O(n) time.
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1. Introduction. Let G be an edge-weighted simple graph, i.e., G does not con-
tain multiple edges and self-loops. We say that G is unweighted if the weight of each
edge of G is one. A cycle of G is simple if each node and each edge of G is tra-
versed at most once in the cycle. The girth of G, denoted girth(G), is the minimum
weight of all simple cycles of G. For instance, the girth of each graph in Figure 1.1
is four. As shown by, e.g., Bollobás [4], Cook [12], Chandran and Subramanian [10],
Diestel [14], Erdős [21], and Lovász [39], girth is a fundamental combinatorial charac-
teristic of graphs related to many other graph properties, including degree, diameter,
connectivity, treewidth, and maximum genus. We address the problem of computing
the girth of an n-node graph. Itai and Rodeh [28] gave the best known algorithm
for the problem, running in time O(M(n) log n), where M(n) is the time for mul-
tiplying two n × n matrices [13]. In the present paper, we focus on the case that
the input graph is undirected, unweighted, and planar. Djidjev [16, 17] gave the
first nontrivial algorithm for the case, running in O(n5/4 logn) time. The min-cut
algorithm of Chalermsook, Fakcharoenphol, and Nanongkai [9] reduced the time com-
plexity to O(n log2 n), using the maximum-flow algorithms of, e.g., Borradaile and
Klein [5] or Erickson [22]. Weimann and Yuster [49] further reduced the running time
to O(n log n). Linear-time algorithms for an undirected unweighted planar graph were
known only when the girth of the input graph is bounded by a constant, as shown by
Itai and Rodeh [28], Vazirani and Yannakakis [47], and Eppstein [20]. We give the
first optimal algorithm for any undirected unweighted planar graph.

Theorem 1.1. The girth of an n-node undirected unweighted planar graph is
computable in O(n) time.

Related work. The O(M(n) log n)-time algorithm of Itai and Rodeh [28] also
works for directed graphs. The best known algorithm for directed planar graphs, due
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Fig. 1.1. (a) A planar graph G with nonnegative integral edge weights. (b) The expanded
version expand(G) of G. (c) A contracted graph G′ with expand(G′) = expand(G).

to Weimann and Yuster [49], runs in O(n3/2) time. The O(n log2 n)-time algorithm
of Chalermsook, Fakcharoenphol, and Nanongkai [9], using the maximum-flow algo-
rithms of Borradaile and Klein [5] or Erickson [22], also works for undirected planar
graphs with nonnegative weights. The recent max-flow algorithm of Italiano et al. [29]
improved the running time of the algorithm in [9] to O(n log n log logn). For any given
constant k, Alon, Yuster, and Zwick [1] showed that a k-edge cycle of any n-node
general graph, if it exists, can be found in O(M(n) logn) time or expected O(M(n))
time. The time complexity was reduced to O(n2) by Yuster and Zwick [50] (respec-
tively, O(n) by Dorn [18]) if k is even (respectively, the input graph is planar). See,
e.g., [24, 42, 26, 43, 31, 30, 36, 45, 2, 40, 15, 27, 37, 41, 19, 34, 35, 32, 7, 8, 23, 48, 29]
for work related to girths and min-weight cycles in the literature.

Overview. The degree of a graph is the maximum degree of the nodes in the
graph. For instance, the number of neighbors of each node in an O(1)-degree graph is
bounded by an absolute constant. To compute girth(G0) for the input n-node planar
graph G0, we turn G0 into an m-node “contracted” (see section 2.1) graph G′ with
positive integral edge weights such that m ≤ n and girth(G′) = girth(G0), as done by
Weimann and Yuster [49]. If the “density” (see section 2.1) of G′ is Ω(log2 m), we can
afford to use the algorithm of [9] (see Theorem 2.1) to compute girth(G′). Otherwise,
by girth(G′) = O(log2 m), as proved by Weimann and Yuster (see Lemma 2.4), and
the fact G′ has positive integral weights, we can further transform G′ to a Θ(m)-node
O(log2 m)-outerplane graph G with O(1) degree, O(log2 m) density, and O(log2 m)
maximum weight such that girth(G) = girth(G′). The way we reduce the “outer-
plane radius” (see section 2.2) is similar to those of Djidjev [17] and Weimann and
Yuster [49]. In order not to increase the outerplane radius, our degree-reduction op-
eration (see section 2.2) is different from that of Djidjev [17]. Although G may have
zero-weight edges and may no longer be contracted, it does not affect the correctness
of the following approach for computing girth(G).

A cycle of a graph is nondegenerate if some edge of the graph is traversed exactly
once in the cycle. Let u and v be two distinct nodes of G. Let g(u, v) be the minimum
weight of any simple cycle of G that contains u and v. Let d(u, v) be the distance
of u and v in G. For any edge e of G, let d(u, v; e) be the distance of u and v in
G \ {e}. If e(u, v) is an edge of some min-weight path between u and v in G, then
d(u, v)+ d(u, v; e(u, v)) is the minimum weight of any nondegenerate cycle containing
u and v that traverses e(u, v) exactly once. In general, d(u, v) + d(u, v; e(u, v)) could
be less than g(u, v). However, if u and v belong to a min-weight simple cycle of G,
then d(u, v) + d(u, v; e(u, v)) = g(u, v) = girth(G).

Computing the minimum d(u, v) + d(u, v; e(u, v)) over all pairs of nodes u and
v in G is too expensive. However, computing d(u, v) + d(u, v; e(u, v)) for all pairs of
nodes u and v in a small node set S of G leads to a divide-and-conquer procedure
for computing girth(G). Specifically, since G is an O(log2 m)-outerplane graph, there
is an O(log2 m)-node set S of G partitioning V (G) \ S into two nonadjacent sets V1



THE GIRTH OF A PLANAR GRAPH IN LINEAR TIME 1079

and V2 with roughly equal sizes. Let C be a min-weight simple cycle of G. Let G1

(respectively, G2) be the subgraph of G induced by V1 ∪ S (respectively, V2 ∪ S). If
V (C) ∩ S has at most one node, the weight of C is the minimum of girth(G1) and
girth(G2). Otherwise, the weight of C is the minimum d(u, v) + d(u, v; e(u, v)) over
all O(log4 m) pairs of nodes u and v in S. Edges e(u, v) and distances d(u, v) and
d(u, v; e(u, v)) in G can be obtained via dynamic programming from edges e(u, v)
and distances d(u, v) and d(u, v; e(u, v)) in G1 and G2 for any two nodes u and v
in an O(log3 m)-node superset Border(S) (see section 4) of S. The above recursive
procedure (see Lemma 5.4) is executed for two levels. The first level (see the proofs of
Lemmas 3.3 and 5.4) reduces the girth problem of G to girth and distance problems
of graphs with O(log30 m) nodes. The second level (see the proofs of Lemmas 5.6
and 6.1) further reduces the problems to girth and distance problems of graphs with
O((log logm)30) nodes, each of whose solutions can thus be obtained directly from an
O(m)-time precomputable data structure (see Lemma 5.5). Just like Djidjev [17] and
Chalermsook, Fakcharoenphol, and Nanongkai [9], we rely on dynamic data structures
for planar graphs. Specifically, we use the dynamic data structure of Klein [33] (see
Lemma 5.2) that supports point-to-point distance queries. We also use Goodrich’s
decomposition tree [25] (see Lemma 4.2), which is based on the link-cut tree of Sleator
and Tarjan [46]. The interplay among the densities, outerplane radii, and maximum
weights of subgraphs of G is crucial to our analysis. Although it seems unlikely to
complete these two levels of reductions in O(m) time, we can fortunately bound the
overall time complexity by O(n).

The rest of the paper is organized as follows. Section 2 gives the preliminaries
and reduces the girth problem on a general planar graph to the girth problem on a
graph with O(1) degree and polylogarithmic maximum weight, outerplane radius, and
density. Section 3 gives the framework of our algorithm, which consists of three tasks.
Section 4 shows Task 1. Section 5 shows Task 2. Section 6 shows Task 3. Section 7
concludes the paper.

2. Preliminaries. All logarithms throughout the paper are to the base of two.
Unless clearly specified otherwise, all graphs are undirected simple planar graphs with
nonnegative integral edge weights. Let |S| denote the cardinality of set S. Let V (G)
consist of the nodes of graph G. Let E(G) consist of the edges of graph G. Let
|G| = |V (G)| + |E(G)|. By planarity of G, we have |G| = Θ(|V (G)|). Let wmax(G)
denote the maximum edge weight of G. For instance, if G is as shown in Figures 1.1(a)
and 1.1(b), then wmax(G) = 2 and wmax(G) = 1, respectively. Let w(G) denote the
sum of edge weights of graph G. Therefore, girth(G) is the minimum w(C) over all
simple cycles C of G.

Theorem 2.1 (see [9]). If G is an m-node planar graph with nonnegative weights,
then it takes O(m log2 m) time to compute girth(G).

2.1. Expanded version, density, weight decreasing, contracted graph.
The expanded version of graph G, denoted expand(G), is the unweighted graph ob-
tained from G by the following operations: (1) For each edge (u, v) with positive
weight k, we replace edge (u, v) by an unweighted path (u, u1, u2, . . . , uk−1, v); and
(2) for each edge (u, v) with zero weight, we delete edge (u, v) and merge u and v into
a new node. For instance, the graph in Figure 1.1(b) is the expanded version of the
graphs in Figures 1.1(a) and 1.1(c). One can verify that the expanded version of G
has w(G) − |E(G)| + |V (G)| nodes. Define the density of G to be

density(G) =
|V (expand(G))|

|V (G)| .
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For instance, the densities of the graphs in Figures 1.1(a) and 1.1(c) are 3
2 and 9

5 ,
respectively.

Lemma 2.2. The following statements hold for any graph G:
(1) girth(expand(G)) = girth(G).
(2) density(G) can be computed from G in O(|G|) time.
For any number w, let decr(G,w) be the graph obtainable in O(|G|) time from

G by decreasing the weight of each edge e with w(e) > w down to w. The following
lemma is straightforward.

Lemma 2.3. If G is a graph and w is a positive integer, density(decr(G,w)) ≤
density(G). Moreover, if w ≥ girth(G), girth(decr(G,w)) = girth(G).

A graph is contracted if the two neighbors of any degree-two node of the graph
are adjacent in the graph. For instance, the graphs in Figures 1.1(a) and 1.1(b) are
not contracted and the graph in Figure 1.1(c) is contracted.

Lemma 2.4 (Weimann and Yuster [49, Lemma 3.3]).
(1) Let G0 be an n-node unweighted biconnected planar graph. It takes O(n) time

to compute an m-node biconnected contracted planar graph G with positive
integral weights such that m ≤ n and G0 = expand(G).

(2) If G is a biconnected contracted planar graph with positive integral weights,
then we have that girth(G) ≤ 36 · density(G).

2.2. Outerplane radius and degree reduction. A plane graph is a planar
graph equipped with a planar embedding. A node of a plane graph is external if it
is on the outer face of the embedding. The outerplane depth of a node v in a plane
graph G, denoted depthG(v), is the positive integer such that v becomes external after
peeling depthG(v) − 1 levels of external nodes from G. The outerplane radius of G,
denoted orad(G), is the maximum outerplane depth of any node in G. A plane graph
G is r-outerplane if orad(G) ≤ r. For instance, in the graph shown in Figure 1.1(a),
the outerplane depth of the only internal node is two, and the outerplane depths of
the other five nodes are all one. The outerplane radius of the graph in Figure 1.1(a)
is two and the outerplane radius of the graph in Figure 1.1(c) is one. All three graphs
in Figure 1.1 are 2-outerplane. The graph in Figure 1.1(c) is also 1-outerplane.

Let v be a node of plane graph G with degree d ≥ 4. Let u1 be a neighbor of
v in G. For each i = 2, 3, . . . , d, let ui be the ith neighbor of v in G starting from
u1 in clockwise order around v. Let reduce(G, v, u1) be the plane graph obtained
from G by the following steps, as illustrated by Figure 2.1: (1) adding a zero-weight
path (v1, v2, . . . , vd), (2) replacing each edge (ui, v) by edge (ui, vi) with w(ui, vi) =
w(ui, v), and (3) deleting node v.

Lemma 2.5. Let v be a node of plane graph G with degree four or more. If u1 is
a neighbor of v with the smallest outerplane depth in G, then

Fig. 2.1. The operation that turns a plane graph G into reduce(G, v, u1).
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(1) reduce(G, v, u1) can be obtained from G in time linear in the degree of v
in G,

(2) expand(reduce(G, v, u1)) = expand(G), and
(3) orad(reduce(G, v, u1)) = orad(G).
Proof. The first two statements are straightforward. To prove the third statement,

let j = depthG(v) and G′ = reduce(G, v, u1). Let G′′ be the plane graph obtained
from G′ by peeling j − 1 levels of external nodes. By the choice of u1, each vi with
1 ≤ i ≤ d is an external node in G′′. Therefore, for each i = 1, 2, . . . , d, we have
depthG′(vi) = j. Since the plane graphs obtained from G and reduce(G, v, u1) by
peeling j levels of external nodes are identical, the lemma is proved.

2.3. Proving the theorem by the main lemma. This subsection shows that,
to prove Theorem 1.1, it suffices to ensure the following lemma.

Lemma 2.6. If G is an O(1)-degree plane graph satisfying the equation

(2.1) wmax(G) + orad(G) = O(density(G)) = O(log2 |G|),
then girth(G) can be computed from G in O(|G| + |expand(G)|) time.

Now we prove Theorem 1.1.
Proof of Theorem 1.1. Assume without loss of generality that the input n-node

graph G0 is biconnected. Let G be an m-node biconnected contracted planar graph
with expand(G) = G0 and m ≤ n that can be computed from G0 in O(n) time, as
ensured by Lemma 2.4(1). By Lemma 2.2(1), girth(G) = girth(G0). If n > m log2 m,
by Theorem 2.1, it takes O(m log2 m) = O(n) time to compute girth(G). The theorem
is proved. The rest of the proof assumes m ≤ n ≤ m log2 m.

We first equip the m-node graph G with a planar embedding, which is obtainable
in O(m) time (see, e.g., [6]). Initially, we have |V (G)| = m, |V (expand(G))| = n,
and density(G) = n

m = O(log2 m). We update G in three O(m+n)-time stages which
maintain |V (G)| = Θ(m), |V (expand(G))| = Θ(n), girth(G) = girth(G0), and the
planarity of G. At the end of the third stage, G may contain zero-weight edges and
may no longer be biconnected and contracted. However, the resulting G is of degree
at most three, has nonnegative weights, and satisfies (2.1). The theorem then follows
from Lemma 2.6.

Stage 1. Bounding the maximum weight of G. We repeatedly replace G by
decr(G, �36 · density(G)�) until wmax(G) ≤ �36 · density(G)�. Although density(G)
may change in each iteration of the weight decreasing, by Lemmas 2.3 and 2.4(2)
we know that girth(G) remains the same and density(G) does not increase. Since G
remains biconnected and contracted and has positive weights, Lemma 2.4(2) ensures
girth(G) ≤ 36 · density(G) throughout the stage. After the first iteration, wmax(G) ≤
�36· nm�. Each of the following iterations decreases wmax(G) by at least one. Therefore,
this stage has O( n

m ) iterations, each of which takes O(m) time, by Lemma 2.2(2). The
overall running time is O(n). The resulting m-node graph G satisfies wmax(G) =
O(density(G)) = O(log2 |G|).

Stage 2. Bounding the outerplane radius of G. For each positive integer j, let Vj

consist of the nodes with outerplane depths j in G. For each integer i ≥ 0, let Gi

be the plane subgraph of G induced by the union of Vj with 36 · i · density(G) < j ≤
36 · (i+ 2) · density(G). Let G′ be the plane graph formed by the disjoint union of all
the plane subgraphs Gi such that the external nodes of each Gi remain external in G′.
We have orad(G′) = O(density(G)). Each cycle of G′ is a cycle of G, so girth(G) ≤
girth(G′). By Lemma 2.4(2), we have girth(G) ≤ 36 · density(G). Since the weight
of each edge of G is at least one, the overlapping of the subgraphs Gi in G ensures
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that any cycle C of G with w(C) = girth(G) lies in some subgraph Gi of G, implying
girth(G) ≥ girth(G′). Therefore, girth(G′) = girth(G). By |V (G′)| = Θ(|V (G)|) and
|V (expand(G′))| = Θ(|V (expand(G))|), we have density(G′) = Θ(density(G)). We
replace G by G′. The resulting G satisfies girth(G) = girth(G0) and (2.1).

Stage 3. Bounding the degree of G. For each node v of G with degree four or more,
we find a neighbor u of v in G whose outerplane depth in G is minimized and then
replace G by reduce(G, v, u). By Lemma 2.5(1), this stage takes O(m) time. At the
end, the degree of G is at most three. By Lemma 2.5(2), the expanded version of the
resulting G is identical to that of G at the beginning of this stage. By Lemma 2.5(3),
the outerplane radius remains the same. The number of nodes in G increases by
at most a constant factor. The maximum weight remains the same. Therefore, the
resulting G satisfies (2.1). By Lemma 2.2(1), we have girth(G) = girth(G0).

The rest of the paper proves Lemma 2.6.

3. Framework: Dissection tree, nonleaf problem, and leaf problem.
This section shows the framework of our proof for Lemma 2.6. Let G[S] denote the
subgraph of G induced by node set S. Let T be a rooted binary tree such that each
member of V (T ) is a subset of V (G). To avoid confusion, we use nodes to specify the
members of V (G) and vertices to specify the members of V (T ). Let Root(T ) denote
the root vertex of T . Let Leaf(T ) consist of the leaf vertices of T . Let Nonleaf(T )
consist of the nonleaf vertices of T . For each vertex S of T , let Below(S) denote
the union of the vertices in the subtree of T rooted at S. Therefore, if S is a leaf
vertex of T , then Below(S) = S. Also, Below(Root(T )) consists of the nodes of G
that belong to some vertex of T . For each nonleaf vertex S of T , let Lchild(S) and
Rchild(S) denote the two children of S in T . Therefore, if S is a nonleaf vertex of T ,
then Below(S) = S ∪Below(Lchild(S))∪Below(Rchild(S)). For instance, let T be the
tree in Figure 3.1(b). We have Root(T ) = {2, 7, 10}. Let S = Rchild(Root(T )). We
have S = {7, 8} and Below(S) = {2, 3, 4, 7, 8, 10, 11, 12}. Let L = Lchild(S). We have
L = Below(L) = {2, 3, 4, 7, 8}.

Node sets V1 and V2 are dissected by node set S in G if any node in V1 \ S and
any node in V2 \ S are not adjacent in G. We say that T is a dissection tree of G if
the following properties hold:

• Property 1. Below(Root(T )) = V (G).
• Property 2. The following statements hold for each nonleaf vertex S of T :

(a) S ⊆ Below(Lchild(S)) ∩ Below(Rchild(S)).
(b) Below(Lchild(S)) and Below(Rchild(S)) are dissected by S in G.

For instance, Figure 3.1(b) is a dissection tree of the graph in Figure 3.1(a).

(a) (b) (c)

Fig. 3.1. (a) A weighted plane graph G. (b) A dissection tree T of G with S = {7, 8} and
Border(S) = {2, 7, 8, 10}. (c) Graph G[Below(S)].
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For any subset S of V (G), any two distinct nodes u and v of S, and any edge e of
G, let dS(u, v; e) denote the distance of u and v inG[Below(S)]\{e} and let dS(u, v) de-
note the distance of u and v in G[Below(S)]. Observe that if eS(u, v) is an edge in some
min-weight path between u and v in G[Below(S)], then dS(u, v) + dS(u, v; eS(u, v)) is
the minimum weight of any nondegenerate cycle in G[Below(S)] containing u and
v that traverses eS(u, v) exactly once. For instance, let G and T be shown in
Figures 3.1(a) and 3.1(b). If S = {7, 8}, then G[Below(S)] is as shown in Figure 3.1(c).
We have dS(7, 10) = 7 (e.g., path (7, 8, 12, 11, 10) has weight 7) and dS(7, 10; (7, 8)) =
10 (e.g., path (7, 3, 4, 8, 12, 11, 10) has weight 10). Since (7, 8) is an edge in a min-
weight path (7, 8, 12, 11, 10) between nodes 7 and 10, the minimum weight of any
nondegenerate cycle in G[Below(S)] containing nodes 7 and 10 that traverses (7, 8) ex-
actly once is 17 (e.g., nondegenerate cycle (7, 8, 12, 11, 10, 11, 12, 8, 4, 3, 7) has weight 17
and traverses (7, 8) exactly once).

Definition 3.1. For any dissection tree T of graph G, the nonleaf problem of
(G, T ) is to compute the following information for each nonleaf vertex S of T and
each pair of distinct nodes u and v of S: (1) an edge eS(u, v) in a min-weight path
between u and v in G[Below(S)] and (2) distances dS(u, v) and dS(u, v; eS(u, v)).

Definition 3.2. For any dissection tree T of graph G, the leaf problem of (G, T )
is to compute the minimum girth(G[L]) over all leaf vertices L of T .

Define the sum of squares of a dissection tree T as

squares(T ) =
∑

S∈Nonleaf(T )

|S|2.

Our proof for Lemma 2.6 consists of the following three tasks:
• Task 1. Compute a dissection tree T of G with squares(T ) = O(|G|).
• Task 2. Solve the nonleaf problem of (G, T ).
• Task 3. Solve the leaf problem of (G, T ).
The following lemma ensures that to prove Lemma 2.6, it suffices to complete all

three tasks in O(|G|+|expand(G)|) time for any O(1)-degree plane graphG satisfying
(2.1).

Lemma 3.3. Given a dissection tree T of graph G and solutions to the leaf and
nonleaf problems of (G, T ), it takes O(squares(T )) time to compute girth(G).

Proof. Let gleaf be the given solution to the leaf problem of (G, T ). It takes
O(squares(T )) time to obtain the minimum value gnonleaf of dS(u, v)+dS(u, v; eS(u, v))
over all pairs of distinct nodes u and v of S, where eS(u, v) is the edge in the given
solution to the nonleaf problem of (G, T ). Let C be a simple cycle of G with w(C) =
girth(G). It suffices to show w(C) = min{gleaf, gnonleaf}. By Property 1 of T , there
is a lowest vertex S of T with V (C) ⊆ Below(S). If S is a leaf vertex of T , then
w(C) = gleaf. If S is a nonleaf vertex of T , then w(C) = girth(G[Below(S)]). We
know |S ∩ V (C)| ≥ 2: Assume |S ∩ V (C)| ≤ 1 for contradiction. By Property 2(b)
and simplicity of C, we have V (C) ⊆ S ∪ Lchild(S) or V (C) ⊆ S ∪ Rchild(S). By
Property 2(a), either V (C) ⊆ Lchild(S) or V (C) ⊆ Rchild(S) holds, contradicting the
choice of S. Let u and v be two distinct nodes in S ∩ V (C). Since C is a min-weight
nondegenerate cycle of G[Below(S)], we have w(C) = dS(u, v) + dS(u, v; eS(u, v)).
Therefore, w(C) = gnonleaf. The lemma is proved.

4. Task 1: Computing a dissection tree. Let T be a dissection tree of graph
G. For each vertex S of T , let Above(S) be the union of the ancestors of S in T and
let Inherit(S) = Above(S)∩Below(S). If S is a leaf vertex of T , then let Border(S) =
Inherit(S). If S is a nonleaf vertex of T , then let Border(S) = S ∪ Inherit(S). For
instance, let T be as shown in Figure 3.1(b). Let S = Rchild(Root(T )). We have
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(a) (b) (c)

Fig. 4.1. (a) A plane graph G. (b) A decomposition tree T ′ of G. (c) A dissection tree T of G.

Above(S) = Inherit(S) = {2, 7, 10} and Border(S) = {2, 7, 8, 10}. Let L = Lchild(S).
We have Above(L) = {2, 7, 8, 10} and Inherit(L) = Border(L) = {2, 7, 8}. Define

�(m) = �log30 m�.
For any positive integer r, a dissection tree T of an m-node graph G is an r-dissection
tree of G if the following conditions hold:

• Condition 1. |V (T )| = O(m/�(m)) and
∑

L∈Leaf(T ) |Border(L)| = O(mr/�(m)).

• Condition 2. |L| = Θ(�(m)) and |Border(L)| = O(r logm) holds for each leaf
vertex L of T .

• Condition 3. |S|+ |Border(S)| = O(r logm) holds for each nonleaf vertex S of T .
For any r-outerplane G, it takes O(m) time to compute an O(r)-node set S of G
such that the node subsets V1 and V2 of G dissected by S satisfy |V1|/|V2| = Θ(1)
(see, e.g., [44, 3]). By recursively applying this linear-time procedure, an r-dissection
tree can be obtained in O(m logm) time, which is too expensive for our algorithm.
Instead, based upon Goodrich’s O(m)-time separator decomposition [25], we prove
the following lemma.

Lemma 4.1. Let G be an m-node r-outerplane O(1)-degree graph with r =
O(log2 m). It takes O(m) time to compute an r-dissection tree of G.

Let T ′ be a rooted binary tree such that each vertex of T ′ is a subset of V (G).
We say that T ′ is a decomposition tree of G if Properties 1 and 2b hold for T ′. For
instance, Figure 4.1(b) shows a decomposition tree of the graph in Figure 4.1(a).
For any m-node triangulated plane graph Δ and for any positive integer � ≤ m,
Goodrich [25] showed that it takes O(m) time to compute an O(m/�)-vertex O(logm)-
height decomposition tree T ′ of Δ such that |L| = Θ(�) holds for each leaf vertex L of
T ′ and |S| = O(|Below(S)|0.5) holds for nonleaf vertex S of T ′. As a matter of fact,
Goodrich’s techniques directly imply that if an O(r)-diameter spanning tree of Δ is
given, then a decomposition tree T ′ of Δ satisfying the following four conditions can
also be obtained efficiently:

• Condition 1′. |V (T ′)| = O(m/�(m)).
• Condition 2′. |L| = Θ(�(m)) and |Border(L)| = 0 hold for each leaf vertex L of

T ′.
• Condition 3′. |S| = |Border(S)| = O(r) holds for each nonleaf vertex S of T ′.
• Condition 4′. The height of T ′ is O(logm).
Lemma 4.2. Given an O(r)-diameter spanning tree of an m-node simple trian-

gulated plane graph Δ with r = O(log2 m), it takes O(m) time to compute a decom-
position tree T ′ of Δ that satisfies Properties 1 and 2(b) and Conditions 1′, 2′, 3′,
and 4′.
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(a) (b) (c)

Fig. 4.2. (a) A plane graph G. Each node is labeled by its outerplane depth. (b) A biconnected
internally triangulated plane graph G′ obtained from G. (c) A triangulated plane graph Δ obtained
from G′ with a spanning tree of Δ rooted at u0.

Proof. The lemma can be proved by following what Goodrich did in [25], so we
give only a proof sketch here. Goodrich [25, section 2.4] showed that with some O(m)-
time precomputable dynamic data structures for the given O(r)-diameter spanning

tree and Δ, it takes O(r logO(1) m) time to find a fundamental cycle C of Δ with
respect to the given spanning tree such that the maximum number of nodes either
inside or outside C is minimized. Since the diameter of the given spanning tree
is O(r), we have |C| = O(r). Let V1 (respectively, V2) consist of the nodes of Δ
inside (respectively, outside) C. We have |V1|/|V2| = Θ(1), as shown by Lipton and

Tarjan [38]. With the precomputed data structures, it also takes O(r logO(1) m) time
to (1) split Δ into Δ[V1] and Δ[V2] and (2) split the given O(r)-diameter spanning tree
of Δ into an O(r)-diameter spanning tree of Δ[V1] and an O(r)-diameter spanning
tree of Δ[V2]. Let T

′ be obtained by recursively computing O(r)-node sets Lchild(S)
and Rchild(S) of Δ[V1] and Δ[V2] until |S| ≤ �(m). As long as r = O(m1−ε) holds
for some constant ε > 0, the overall running time is O(m). One can verify that
the resulting tree T ′ indeed satisfies Properties 1 and 2(b) and Conditions 1′, 2′,
3′, and 4′.

We prove Lemma 4.1 using Lemma 4.2.

Proof of Lemma 4.1. It takes O(m) time to triangulate the m-node r-outerplane
graph G into an m-node simple triangulated plane graph Δ that admits a spanning
tree with diameter O(r). Specifically, we first triangulate each connected component
of G into a simple biconnected internally triangulated plane graph G′ such that the
outerplane depth of each node remains the same after the triangulation. Let u0 be
an arbitrary external node of G′. We then add an edge (u0, u) for each external
node u of G′ that is not adjacent to u0. The resulting graph Δ is an m-node O(r)-
outerplane simple triangulated plane graph. An O(r)-diameter spanning tree of Δ
can be obtained in O(m) time as follows. Let u0 be the parent of all its neighbors
in Δ. For each node u other than u0 and the neighbors of u0, we arbitrary choose
a neighbor v of u in Δ with depthΔ(v) = depthΔ(u) − 1 and let v be the parent of
u in the spanning tree. The diameter of the resulting spanning tree of Δ is O(r).
For instance, let G be as shown in Figure 4.2(a). An example of G′ is shown in Fig-
ure 4.2(b). An example of Δ together with its spanning tree rooted at u0 is shown in
Figure 4.2(c).

Let T ′ be a decomposition tree of Δ as ensured by Lemma 4.2. Since Δ is
obtained from G by adding edges, T ′ is also a decomposition tree of G that satisfies
Properties 1 and 2(b) and Conditions 1′, 2′, 3′, and 4′. We prove the lemma by
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showing that T ′ can be modified in O(m) time into an r-dissection tree T of G by
calling descend(Root(T ′)), where the recursive procedure descend(S) is defined as
follows. If S is a leaf vertex of T ′, then we return. If S is a nonleaf vertex of T ′,
we first (1) run the following steps for each node u of the current S, and then (2)
recursively call descend(Lchild(S)) and descend(Rchild(S)).

Step 1. If u is not adjacent to any node in the current Below(Lchild(S)) in G,
then we delete u from S and insert u into the current Rchild(S).

Step 2. If u is adjacent to some node in the current Below(Lchild(S)) in G and
is not adjacent to any node in the current Below(Rchild(S)) in G, then we delete u
from S and insert u into the current Lchild(S).

Step 3. If u is adjacent to some node in the current Below(Lchild(S)) and some
node in the current Below(Rchild(S)) in G, then we leave u in S and insert u into the
current Lchild(S) and Rchild(S).

For instance, if the decomposition tree T ′ is as shown in Figure 4.1(b), then the
resulting tree T of running descend(Root(T ′)) is as shown in Figure 4.1(c).

We show that T is indeed an r-dissection tree of G. By definition of descend,
one can verify that a node u belongs to a nonleaf vertex S of T if and only if u belongs
to both Below(Lchild(S)) and Below(Rchild(S)) in T . Property 2(a) holds for T and,
thereby, Properties 1 and 2 of T follow from Properties 1 and 2(b) of T ′. Moreover,
if u belongs to a nonleaf vertex S of T , then the degrees of u in G[Below(Lchild(S))]
and G[Below(Rchild(S))] are strictly less than the degree of u in G[Below(S)]. Since
the degree of G is O(1), each node u of G belongs to O(1) vertices of T . By Con-
ditions 1′ and 3′ of T ′, we have

∑
L∈Leaf(T ) |Border(L)| =

∑
S∈Nonleaf(T ′) O(|S|) =

O(mr/�(m)) and |V (T )| = |V (T ′)| = O(m/�(m)). Condition 1 of T holds. By Con-
ditions 3′ and 4′ of T ′, the procedure increases |S| and |Border(S)| for each vertex S
of T ′ by O(r logm). Therefore, Conditions 2 and 3 of T follow from Conditions 2′

and 3′ of T ′.
We show that T can be obtained from T ′ in O(m) time. We first spend O(m)

time to compute for each node v of G a list of O(1) vertices of the original T ′ that
contain v. Consider the case that S is a nonleaf vertex of the current T ′. Let S′

be a child vertex of S in the current T ′. To determine whether a node u of S is
adjacent to some node in the current Below(S′), for all O(1) neighbors v of u in G,
we traverse upward in T ′ from the O(1) vertices of T ′ that currently contain v. The
traversal passes S′ if and only if u is adjacent to some node in the current Below(S′).
By Condition 4′ of T ′, it takes O(logm) time to determine whether u is adjacent
to the current Below(S′). Each update to the list of vertices of T ′ that contains
u takes O(1) time. By Conditions 1′, 3′, and 4′ of T ′, the overall running time of
descend(Root(T ′)) is O(mr log2 m/�(m)) = O(m). The lemma is proved.

5. Task 2: Solving the nonleaf problems. This section proves the following
lemma.

Lemma 5.1. Let G be an m-node O(1)-degree r-outerplane graph with wmax(G)+
r = O(log2 m). Given an r-dissection tree T of G, the nonleaf problem of (G, T ) can
be solved in O(mr) time.

Definition 5.2. Let T be a dissection tree of G. Let S be a vertex of T . The
border problem of (G, T ) for S is to compute the following information for any two
distinct nodes u and v of Border(S): (1) dS(u, v), (2) an edge eS(u, v) on some min-
weight path between u and v in G[Below(S)] that is incident to u, and (3) dS(u, v; e)
for each edge e of G incident to u.
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Since S ⊆ Border(S) holds for each nonleaf vertex S of T , any collection of
solutions to the border problems of (G, T ) for all nonleaf vertices of T yields a solution
to the nonleaf problem of (G, T ). We prove Lemma 5.1 by solving the border problems
of (G, T ) for all vertices of T in O(mr) time. A leaf vertex L in an r-dissection tree
T of an m-node graph G is special if

|Border(L)|+ r ≤ �log2 �(m)�.

Section 5.1 shows that the border problems of (G, T ) for all vertices of T can be
reduced in O(mr) time to the border problems of (G, T ) for all special leaf vertices
of T , as summarized by Lemma 5.4. Section 5.2 shows that the border problems of
(G, T ) for all special leaf vertices of T can be solved in O(mr) time, as summarized
by Lemma 5.6. Lemma 5.1 follows immediately from Lemmas 5.4 and 5.6.

5.1. A reduction to the border problems for the special leaf vertices.
Our reduction uses the following dynamic data structure that supports distance
queries.

Lemma 5.2 (Klein [33]). Let G be an �-node planar graph. It takes O(� log2 �)
time to compute a data structure Oracle(G) such that each update to the weight of an
edge and each query to the distance between any two nodes in G can be supported by
Oracle(G) in time O(�2/3 log5/3 �) = O(�7/10).

The following lemma is needed to ensure the correctness of our reduction via
dynamic programming.

Lemma 5.3. For each nonleaf vertex S of T , we have S ⊆ Border(Lchild(S)) ∩
Border(Rchild(S)) and Border(S) ⊆ Border(Lchild(S)) ∪ Border(Rchild(S)).

Proof. Let S′ = Lchild(S) and S′′ = Rchild(S). By Property 2(a) of T , S ⊆
Below(S′) ∩ Below(S′′). By S ⊆ Above(S′) ∩ Above(S′′), we have S ⊆ Inherit(S′) ∩
Inherit(S′′). By Inherit(S′) ⊆ Border(S′) and Inherit(S′′) ⊆ Border(S′′), we have
S ⊆ Border(S′) ∩ Border(S′′). We also have

Inherit(S) \ S = ((Below(S′) ∪ Below(S′′) ∪ S) ∩ Above(S)) \ S
⊆ (Below(S′) ∪ Below(S′′)) ∩ Above(S)

= (Below(S′) ∩ Above(S)) ∪ (Below(S′′) ∩ Above(S))

⊆ (Below(S′) ∩ Above(S′)) ∪ (Below(S′′) ∩Above(S′′))
= Inherit(S′) ∪ Inherit(S′′)
⊆ Border(S′) ∪ Border(S′′).

Thus, Border(S) = S ∪ (Inherit(S) \ S) ⊆ Border(S′) ∪ Border(S′′). The lemma is
proved.

The following lemma shows the reduction.
Lemma 5.4. Let G be an m-node O(1)-degree graph. Given (1) an r-dissection

tree T of G with r = O(log2 m) and (2) solutions to the border problems of (G, T )
for all special leaf vertices of T , it takes O(mr) time to solve the border problems of
(G, T ) for all vertices of T .

Proof. Solutions for special leaf vertices are given. We first show that it takes
O(mr) time to compute solutions for all nonspecial leaf vertices L of T . Let � = �(m).
By Condition 1 of T , we have

∑
L∈Leaf(T )(|Border(L)|+ r) = O(mr/�), implying that

T has O( mr
� log2 �

) nonspecial leaf vertices. For each nonspecial leaf vertex L of T , we

run the following O(� log2 �)-time steps.
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(a) (b) (c)

Fig. 5.1. (a) A dissection tree T of the graph in (b) with R = Border(R) = {2, 7, 10}, S = {7, 8},
and Border(S) = {2, 7, 8, 10}. (b) Graph G = G[Below(R)]. (c) Graph G[Below(S)].

Step 1. By Condition 2 of T , we have |L| = Θ(�). We compute a data structure
Oracle(G[L]) in O(� log2 �) time as ensured by Lemma 5.2.

Step 2. For any two nodes u and v in Border(L), we first obtain dL(u, v) from
Oracle in O(�7/10) time. We then find a neighbor x of u in G[L] with dL(u, v) =
w(u, x) + dL(x, v) and let eL(u, v) = (u, x), which can be obtained from Oracle in
O(�7/10) time, since the degree of G is O(1). By Lemma 5.2 and Condition 2 of T , the
overall time complexity for this step is O(�7/10 · |Border(L)|2) = O(�7/10 · r2 log2 m) =
O(�9/10).

Step 3. For each edge e that is incident to Border(L), we compute dL(u, v; e) from
Oracle for all nodes u and v of Border(L) as follows: (1) temporarily setting w(e) = ∞;
(2) for each pair of distinct nodes u and v in Border(L), obtaining dL(u, v; e) from
the distance of u and v in the current G[L]; and (3) restoring the original weight of e.
Since the degree of G is O(1), there are O(|Border(L)|) choices of e. By Lemma 5.2
and Condition 2 of T , the running time of this step is O(�7/10 · |Border(L)|3) =
O(�7/10 · r3 log3 m) = O(�).

We now show that the solutions for all nonleaf vertices S of T can be computed
in O(m) time. By definition of �(m) and Condition 1 of T , we have |Nonleaf(T )| =
O(m/ log30 m). By r = O(log2 m) and Condition 3 of T , we have |S|+ |Border(S)| =
O(log3 m). It suffices to prove the following claim for each nonleaf vertex S of T :
“Given solutions for S′ = Lchild(S) and S′′ = Rchild(S), a solution for S can be
computed in O(|Border(S)|3 · |S|2) time.” By Property 2(b) of T , Below(S′) and
Below(S′′) are dissected by S in G. We use (S, k)-path to denote a path ofG[Below(S)]
that switches to a different side of S at most k times: Precisely, an (S, 0)-path is a
path that completely lies in G[Below(S′)] or completely lies in G[Below(S′′)]. For
any positive integer k, we say that (u1, u2, . . . , ut) is an (S, k)-path if (u1, u2, . . . , ut′)
is an (S, k − 1)-path, where t′ is the smallest integer such that (ut′ , ut′+1, . . . , ut)
is an (S, 0)-path. For instance, let T and G be as shown in Figures 5.1(a) and
5.1(b). Let S = {7, 8}. Note that (8, 7, 11, 10) is both an (S, 0)-path and an (S, 1)-
path with ut′ = 8. However, (2, 3, 7, 11, 10) is an (S, 1)-path with ut′ = 7 but not
an (S, 0)-path. Based upon the facts Border(S) ⊆ Border(S′) ∪ Border(S′′) and
S ⊆ Border(S′) ∩ Border(S′′) as ensured by Lemma 5.3, we prove the above claim in
the following three stages, each of which is also illustrated by Figure 5.1:

Stage 1. For any nodes u and v in Border(S), let dS,i(u, v) denote the mini-
mum weight of any (S, i)-path of G[Below(S)] between u and v. Any simple path of
G[Below(S)] is an (S, |S|)-path, so dS(u, v)=dS,|S|(u, v). As illustrated by Figure 5.1(b),
we have dR,0(10, 2) = 7 and dR,1(10, 2) = 4. As illustrated by Figure 5.1(c), we have
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dS,0(10, 2) = ∞ and dS,1(10, 2) = 9. One can verify the following recurrence
relation:

dS,i(u, v) =

⎧⎪⎨
⎪⎩

0 if i = 0 and u = v;
min{dS′(u, v), dS′′(u, v)} if i = 0 and u 
= v;
min

y∈S∪{v}
dS,i−1(u, y) + dS,0(y, v) if i ≥ 1.

This stage takes O(|Border(S)|2 · |S|2) time via dynamic programming.
Stage 2. For any distinct nodes u and v in Border(S), let eS,i(u, v) denote an

incident edge of u in a min-weight (S, i)-path of G[Below(S)] between u and v. If no
(S, i)-path of G[Below(S)] between u and v exists, let eS,i(u, v) = ∅. As illustrated
by Figure 5.1(b), edge (10, 6) is the only choice for eR,0(10, 2) and eR,1(10, 2). As
illustrated by Figure 5.1(c), we have eS,0(10, 2) = ∅, and edge (10, 11) is the only
choice for eS,1(10, 2). Let

eS,i(u, v) =

⎧⎨
⎩

eS′(u, v) if i = 0 and dS′(u, v) ≤ dS′′(u, v);
eS′′(u, v) if i = 0 and dS′(u, v) > dS′′(u, v);
eS,i−1(u, y) if i ≥ 1,

where y can be any node in S ∪ {v} \ {u} with dS,i(u, v) = dS,i−1(u, y) + dS,0(y, v).
Since both eS′(u, v) and eS′′(u, v) are incident to u in G[Below(S)], each eS,i(u, v) is
incident to u in G[Below(S)]. Therefore, eS,|S|(u, v) is a valid choice of eS(u, v). This
stage takes O(|Border(S)|2 · |S|2) time via dynamic programming.

Stage 3. For any nodes u and v in Border(S) and any edge e of G[Below(S)] that
is incident to Border(S), let dS,i(u, v; e) be the minimum weight of any (S, i)-path in
G[Below(S)]\{e} between u and v. We have dS(u, v; e) = dS,|S|(u, v; e). As illustrated
by Figure 5.1(b), we have dR,0(10, 2; (10, 6)) = dR,1(10, 2; (10, 6)) = 8. As illustrated
by Figure 5.1(c), dS,0(10, 2; (10, 11)) = dS,1(10, 2; (10, 11)) = ∞. One can verify the
following recurrence relation:

dS,i(u, v; e) =

⎧⎪⎨
⎪⎩

0 if i = 0 and u = v;
min{dS′(u, v; e), dS′′(u, v; e)} if i = 0 and u 
= v;
min

y∈S∪{v}
dS,i−1(u, y; e) + dS,0(y, v; e) if i ≥ 1.

Since the degree of G is O(1), the number of choices of e is O(|Border(S)|). This
stage takes O(|Border(S)|3 · |S|2) time via dynamic programming.

The lemma is proved.

5.2. Solving the border problems for the special leaf vertices. We need
the following linear-time precomputable data structure in the proof of Lemma 5.6 to
solve the border problems of (G, T ) for all special leaf vertices of T as well as in the
proof of Lemma 6.1 to solve the leaf problem of (G, T ).

Lemma 5.5. For any given positive integers k = O(log logm)O(1) and w =
O(logm)O(1), it takes O(m) time to compute a data structure Table(k, w) such that
the following statements hold for any O(1)-degree graph H with at most k nodes whose
edge weights are at most w:

1. It takes O(|H |) time to obtain a reference pointer ref(H) from Table(k, w)
such that each of the following queries for any two distinct nodes u and v
of H can be answered from ref(H) and Table(k, w) in O(1) time: (1) the
distance of u and v in H, (2) an edge incident to u that belongs to at least
one min-weight path between u and v in H, and (3) the distance of u and v
in H \ {e} for each edge e of H incident to u.
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(a) (b) (c)

Fig. 5.2. (a) Graph GL = G[L] with L = {2, 3, 4, 7, 8}. (b) A dissection tree T ′
L of GL. (c) A

dissection tree TL of GL obtained from T ′
L.

2. It takes O(|H |) time to obtain girth(H) from Table(k, w).

Proof. Let H consist of all graphs of at most k nodes whose maximum weight is
at most w. It takes O(w)O(k2) time to list all graphs H in H. It takes O(kO(1)) time
to precompute the information in Statements 1 and 2 for each graph H in H. The
lemma follows from

(
O(logm)O(1)

)(O(log logm)O(1)) · O
(
(log logm)O(1)

)O(1)

= O(m).

Lemma 5.6. Let G be an m-node O(1)-degree r-outerplane graph with wmax(G) =
O(log2 m). Given an r-dissection tree T of G, the border problems of (G, T ) for all
special leaf vertices of T can be solved in O(mr) time.

Proof. We assume that T does have special leaf vertices, since otherwise the
lemma holds trivially. By the assumption, we know r ≤ �log2 �(m)�. Let L be a
special leaf vertex of T . Let GL = G[L]. Let mL = |L|. By Condition 2 of T ,
we know mL = Θ(�(m)). Let rL = r + |Border(L)|. Clearly, GL is an mL-node
O(1)-degree rL-outerplane graph with rL = O(log2 mL). By Lemma 4.1, it takes
O(mL) time to obtain an rL-dissection tree T ′

L of GL. Let TL be obtained from T ′
L

by replacing each vertex S′ of T ′
L by S′ ∪Border(L). For instance, let T and G be as

shown in Figures 5.1(a) and 5.1(b). If L = {2, 3, 4, 7, 8} is a special leaf vertex of T ,
then GL is as shown in Figure 5.2(a). We have Border(L) = {2, 7, 8}. If T ′

L is as shown
in Figure 5.2(b), then TL is as shown in Figure 5.2(c). Clearly, Border(L) ⊆ Root(TL).
We show that TL is also an rL-dissection tree of GL. Since L is a leaf vertex of T ,
we have Border(L) ⊆ L. Therefore, Properties 1 and 2 of TL follow from Properties 1
and 2 of T ′

L. Let �L = �(mL). By Condition 1 of T ′
L and |Border(L)| = O(rL), we

have |V (TL)| = |V (T ′
L)| = O(mL/�L) and

∑
L̂∈Leaf(TL)

|Border(L̂)| ≤ |V (T ′
L)| · |Border(L)|+

∑
L′∈Leaf(T ′

L)

|Border(L′)|

= O

(
mL · rL

�L

)
.

Condition 1 holds for TL. Adding Border(L) to vertex S′ of T ′
L increases |S′| and

|Border(S′)| by no more than rL, so Conditions 2 and 3 for TL follow from Conditions 2
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and 3 for T ′
L. Therefore, TL is an rL-dissection tree of GL with Border(L) ⊆ Root(TL).

It follows that a solution to the border problem of (GL, TL) for Root(TL) yields a
solution to the border problem of (G, T ) for L.

Let k be the maximum |L̂| over all leaf vertices L̂ of TL and all special leaf
vertices L of T . We have k = Θ(�L) = O((log logm)30). By wmax(G) = O(log2 m),
it takes O(m) time to compute a data structure Table(k,wmax(G)), as ensured by
Lemma 5.5. By Lemma 5.5, it takes O(|L̂| + |Border(L̂)|2) = O(�L) time to obtain
from the precomputed data structure Table(k,wmax(G)) a solution to the border
problem of (GL, TL) for each special leaf vertex L̂ of TL. By Condition 1 of TL, the
border problems of (GL, TL) for all special leaf vertices of TL can be solved in overall
O(mL/�L) ·O(�L) = O(mL) time. By Lemma 5.4, it takes O(mL · rL) time to obtain
a collection of solutions to the border problems of (GL, TL) for all vertices of TL,
including Root(TL), which yields a solution to the border problem of (G, T ) for the
special leaf vertex L of T . By Condition 1 of T and O(mL · rL) = O(�(m) · (r +
|Border(L)|)), the overall running time to solve the border problems of (G, T ) for all
special leaf vertices of T is O(�(m)) · ∑L∈Leaf(T ) O(r + |Border(L)|) = O(mr). The
lemma is proved.

6. Task 3: Solving the leaf problem.

Lemma 6.1. Let G be an m-node O(1)-degree r-outerplane graph satisfying that
wmax(G) + r = O(density(G)). Given an r-dissection tree T of G, the leaf problem
of (G, T ) can be solved in O(m · density(G)) time.

Proof. If density(G) ≥ log2 �(m), by Condition 1 of T and Theorem 2.1, the
problem can be solved in O(�(m) log2 �(m)) · O(m/�(m)) = O(m · density(G)) time.
The rest of the proof assumes wmax(G) + r = O(density(G)) = O(log2 �(m)). Let
L be a leaf vertex of T . Let mL = |L|. Let GL = G[L]. By Condition 2 of T ,
we have mL = Θ(�(m)). Therefore, GL is an mL-node O(1)-degree r-outerplane
graph with wmax(GL) + r = O(log2 mL). By Lemma 4.1, an r-dissection tree TL

of GL can be obtained from GL in O(mL) time. Let k be the maximum |L̂| over
all leaf vertices L̂ of TL and all leaf vertices L of T . We have k = Θ(�(mL)) =
O((log logm)30). Let Table(k,wmax(G)) be a data structure computable inO(m) time
as ensured by Lemma 5.5. By Lemma 5.5, girth(GL[L̂]) for any leaf vertex L̂ of TL

can be obtained from Table(k,wmax(G)) in O(|L̂|) time. By Conditions 1 and 2 of TL,
the solution to the leaf problem of (GL, TL) can be obtained from Table(k,wmax(G))
in O(mL/�(mL)) · O(�(mL)) = O(mL) time. By Lemma 5.1, the nonleaf problem of
(GL, TL) can be solved in O(mL · r) time. By Conditions 1 and 3 of TL, we have
squares(TL) = O(mL · r2 log2 mL/�(mL)) = O(mL). By Lemma 3.3, it takes O(mL)
time to compute girth(GL) from the solutions to the leaf and nonleaf problems of
(GL, TL). Therefore, girth(G[L]) can be computed in O(mL · r) = O(�(m) · r) time.
By Condition 1 of T , it takes O(m/�(m)) · O(�(m) · r) = O(m · density(G)) time to
solve the leaf problem of (G, T ). The lemma is proved.

It remains to prove the main lemma of the paper, which implies Theorem 1.1, as
already shown in section 2.3.

Proof of Lemma 2.6. Let m = |V (G)| and n = |V (expand(G))|. Let r = orad(G).
That is, G is an m-node O(1)-degree r-outerplane graph with wmax(G) + r =
O(density(G)) = O(log2 m). By Lemma 4.1, an r-dissection tree T of G can be
obtained from G in O(m) time. By Lemma 5.1, the nonleaf problem of (G, T ) can be
solved in O(mr) = O(n) time. By Lemma 6.1, it takes O(m ·density(G)) = O(n) time
to solve the leaf problem of (G, T ). By Conditions 1 and 3 of T , we have squares(T ) =
O(mr2 log2 m/�(m)) = O(m). The lemma follows from Lemma 3.3.
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7. Concluding remarks. We give the first linear-time algorithm for computing
the girth of any undirected unweighted planar graph. Our algorithm can be modified
into one that finds a simple min-weight cycle. Specifically, when we solve each girth
problem or each distance problem in our algorithm, we additionally let the algorithm
output a node on a corresponding min-weight cycle or min-weight path. As a result,
our algorithm not only computes the girth of the input graph but also outputs a node
u on a min-weight cycle of the input graph. We can then use the breadth-first search
algorithm of Itai and Rodeh [28] to output a min-weight cycle containing u in linear
time.

The O(n log n)-time algorithm of Weimann and Yuster [49] works on O(1)-genus
graphs. It would be of interest to see if our algorithm can be extended to work
for O(1)-genus graphs by, e.g., extending our black-box tools (the decomposition
tree of Goodrich [25] and the distance oracle of Klein [33]) to work for O(1)-genus
graphs.
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